Browse > Article
http://dx.doi.org/10.5370/JEET.2011.6.1.094

Design and Analysis of Hybrid Stator Bearingless SRM  

Lee, Dong-Hee (Dept. of Mechatronics Engineering, Kyungsung University)
Ahn, Jin-Woo (Dept. of Mechatronics Engineering, Kyungsung University)
Publication Information
Journal of Electrical Engineering and Technology / v.6, no.1, 2011 , pp. 94-103 More about this Journal
Abstract
This paper presents a novel bearingless switched reluctance motor (BLSRM) with decoupled torque and suspending stator poles. BLSRM is different from conventional bearingless switched reluctance motors (SRMs) because its suspending poles are separated from the torque poles. Perpendicularly placed suspending poles are designed to produce a continuous radial force to suspend the rotor. Due to the independent suspending and torque poles, BLSRM produces a suspending force with excellent linearity according to the rotor position and independent characteristics of the torque current. The air-gap is easier to control than in conventional SRMs with their linear and independent characteristics. Furthermore, to verify the proposed structure, a mathematical model for the suspending force is derived. Finite element analysis is also employed to compare BLSRM and conventional SRMs expressions of suspending force. A prototype motoris designed and manufactured to verify the effectiveness of the proposed bearingless structure.
Keywords
SRM; Bearingless structure; Hybrid stator; FEM analysis; Suspending force; Separated poles;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 P. J. Lawrenson, J. M. Stephenson, T. T. Blenkinsop, J. Corda, and N. N. Fulton, "Variable-speed reluctance motors," in Proc. IEEE, Pt. B, Vol. 127, No. 4, July 1980, pp.253-265.
2 N.R. Garrigan, W. L. Soong, C. M. Stephens, A. Storacc, and T. A. Lipo, "Radial force characteristics of a switched reluctance machine," in Proc. IEEE IAS Annu. Meeting, 1999, Vol.4, pp.2250-2258.
3 I. Husain, A. Radun, and J. Nairus, "Unbalanced force calculation in switched reluctance machines," IEEE Trans, Magn., Vol.36, No.1, pp.330-338.   DOI   ScienceOn
4 M. Takemoto, A. Chiba, H. Akagi, and T. Fukao, "Radial Force and Torque of a Bearingless Switched Reluctance Motor Operating in a Region of Magnetic Saturation" in Conf. Record IEEE-IAS Annual Meeting, 2002, pp. 35-42.
5 M. Takemoto, K. Shimada, A. Chiba, and T. Fukao, "A Design and Characteristics of Switched Reluctance Type Bearingless Motors", in Proc. 4th Int. Symp. Magnetic Suspension Technology, Vol. NASA/CP-1998-207654, May 1998, pp. 49-63.
6 Li Chen, Wilfried Hofmann, "Analytically Computing Winding Currents to Generate Torque and Levitation Force of a New Bearingless Switched Reluctance Motor", in Proc.12th EPE-PEMC, Aug, 2006, pp. 1058-1063.
7 Carlos R. Morrison. Bearingless Switched Reluctance Motor. U.S. Patent x, 2004.
8 A. V. Radum, "Design considerations for the switched reluctance motor," IEEE Trans. Ind. Applicat., Vol. 31, pp.1079-1087, Sep./Oct. 1995.   DOI   ScienceOn
9 M. N. Anwar, Iqbal Husain, and A. V. Radun, "A comprehensive design methodology for switched reluctance machines," IEEE Trans. IAS, Vol. 37, pp. 1684-1692, Nov/Dec, 2001.