• Title/Summary/Keyword: Bearing force

Search Result 882, Processing Time 0.321 seconds

An Experimental Study on the Effect of Surface Roughness on Nanoscale Adhesion (표면 거칠기가 나노 응착력에 미치는 영향에 관한 실험적 연구)

  • Yang Seung Ho
    • Tribology and Lubricants
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Effect of Surface roughness on nanoscale adhesion was studied experimentally by using colloidal probe technique. Glass micro balls having the radius of $3.3\~17.4{\mu}m$ were glued at the end of AFM cantilevers to prepare colloidal probes. Adhesion force between the colloidal probe and Si-wafer was measured using pull-off force measuring method. Results showed that the measured adhesion forces are not the function of the radius of the glued balls because the ball surfaces are rough. It is also found that roughness parameters such as $R_a,\;R_q\;and\;R_{max}$ do not have important role on nanoscale adhesion. In order to find the effect of surface roughness on nanoscale adhesion, the bearing areas were extracted from the measured topography of glued balls. After normalizing the measured adhesion force with the bearing area, it was found that the normalized adhesion force kept constant as function of the radius of glued ball.

A Study on Hydrodynamic Coefficient Characteristics of Air Bearing for High Speed Journal

  • Lee, Jong-Ryul;Lee, Deug-Woo;Soeng, Sueng-Hak;Lee, Yong-Chul
    • KSTLE International Journal
    • /
    • v.4 no.2
    • /
    • pp.66-72
    • /
    • 2003
  • This paper presents the hydrodynamic effect by the journal speed, eccentricity and source positions in order to overcome the defects of air bearing such as low stiffness and damping coefficient. Choosing the two row source position of air bearing is different from existing investigations in the side of pressure distribution of air film because of the high speed of journal and the wedge effects by the eccentricity. These optimal choices of the two row source positions enable us to improve the performance of the film reaction force and loading force as making the high-speed spindle. In this paper, The pressure behavior in theory of air film in high speed region of journal according to the eccentricity of journal and the source positions analyzed. The theoretical analysis has been identified by experiments. The results of investigated characteristics may be applied to precision devices like ultra-precision grinding machine and ultra high-speed milling.

An Experimental Study on the Dynamic Coefficient According to the Source Positions in Externally Pressurized Air-lubricated Journal Bearing with Two Row Sources (2열 외부가압 공기 저어널 베어링에서 급기구 위치에 따른 동적계수에 관한 실험적 연구)

  • 이종렬;이준석;성승학;이득우
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.476-481
    • /
    • 2001
  • This paper has been presented the hydrodynamic effect by the journal speed, eccentricity and source positions in order to overcome the defects of air bearing such as low stiffness and damping coefficient. Choosing the two row source position of air bearing is different from existed investigations in the side of pressure distribution of air film because of the high speed of journal and the wedge effects by the eccentricity. These optimal chooses of the two row source positions enable us to improve the performance of the film reaction force and loading force as making the high speed spindle. In this paper, The pressure behavior in theory of air film according to the eccentricity of journal and the source positions analyzed. The theoretical analysis have been identified by experiments. The results of investigated characteristics may be applied to precision devices like ultra-precision grinding machine and ultra high speed milling.

The characteristics of the behaviour of plate girder bridges according to the boundary conditions. (경계조건에 따른 판형교 장대레일의 거동 특성)

  • Min Kyung-Ju;Jung Ue Ha;Kim Young-Kook
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.356-363
    • /
    • 2003
  • The CWR of the plate girder bridges in non-ballast causes the additional axial force on the rail and the bearing due to the temperature axial force and the interaction between the CWR and bridges. This study shows the remarkable improvement of reducing the axial force of the CWR on the non-ballast bridge, compared to conventional methods. New method, which is differently designed in terms of longitudinal semi-rigid bearing, reduces the axial force on the bearing by making the girder act both directions. This method is applicable to most cases of bridges regardless of the restriction of length, and useful to reduce the abrasion and damage of the track material.

  • PDF

A Expermental Study on the Dynamic Coefficients according to the Source Positions in Externally Pressurised Air-lubricated Journal Bearing with Two Row Sources (2열 외부가압 공기 저어널 베어링에서 공기 급기구 위치에 따른 동적계수에 관한 실험적 연구)

  • 이종렬;이준석;성승학;이득우
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.231-235
    • /
    • 2001
  • This paper has been presented the dynamic effect by the journal speed. eccentricity and source positions in order to overcome the defects of air bearing such as low stiffness and damping coefficient. Choosing the two row source position of air bearing is different from previous investigations in the side of pressure distribution of air film by the wedge effects. These optimal chooses of the two row source positions enable us to improve the performance of the film reaction force and loading force as making the high speed spindle. The results of investigated characteristics may be applied to precision devices like ultra-precision grinding machine and ultra high speed milling.

  • PDF

Effects of Hydraulic Force on the Unbalance Vibration of Centrifugal Pump Rotors (원심펌프 회전축계의 불평형 응답에 미치는 유체력의 영향)

  • 양보석;최원호
    • Tribology and Lubricants
    • /
    • v.2 no.2
    • /
    • pp.20-26
    • /
    • 1986
  • The paper presents an analytical investigation of the unbalance vibrations of a pump rotor. The analysis applies to rotor-bearing-seal-impeller systems which consist of rigid disks, distributed parameter rotor elements and discreate bearings, seals, and impellers. The dynamic hydraulic force of bearing, seal and impeller elements are represented by four stiffness coefficients arid four damping coefficients. Numerical results are presented for unbalance response associated with various kinds bearing, and with effects of seal and impeller forces.

A Study on the Deformation Characteristics of a Slipper Bearing for High Pressure Piston Pump (고압 피스톤 펌프용 슬리퍼 베어링의 변형 특성에 관한 연구)

  • Koh, Sung-Wi;Kim, Byung-Tak
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.39-44
    • /
    • 2009
  • The hydrostatic slipper bearing is generally used in high pressure axial piston pumps to support the load generated from two surfaces which are sliding relatively at low speed. The object of the bearing is to remove the possibility of direct contact by maintenance of an adequate oil film thickness between two metal surfaces. Because the bearing performance is influenced by the bearing deformation, it is highly dependent on the injection pressure, the bearing surface profile and so on. In this study, the deformation characteristics of a hydrostatic slipper bearing is investigated according to the injection pressure by the finite element analysis. In the analysis, the special boundary condition to take the fluid-structure interaction (FSI) into account is used on the interactive surface. The results, such as bearing deformation, stress and lifting force, obtained from the fully coupled analysis are compared with those from the single step sequential method.

Analysis of Response Characteristics of journal bearing on Millimeter-scale Micro Gas Turbine using Fluid numerical simulation (초소형 가스 터빈용 저널 베어링 내 유동장 수치해석을 통한 응답특성 분석)

  • Seo, J.H.;Baek, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.387-391
    • /
    • 2011
  • Since MEMS based micro actuators or generating devices have high efficiency per volume, plenty of research are ongoing. Among them, MEMS based millimeter-scale micro gas' turbine is one of the most powerful issue for replacing chemical batteries. However, since limiting of MEMS manufacturing technique, it is very difficult that makes wide turbine bearing area. It causes low DN number, so sufficient bearing force is hard to achieve. Thus, the most important issue on micro gas turbine is proper bearing design which can keep rotor stable during operation. In order to that, micro-scale gas-lubricated bearing is generally used. In this paper, basic feasibility study and design of journal bearing for 10mm diameter micro gas turbine is described Journal bearing is hydrostatic gas-lubricated type. Numerical simulation is performed with ANSYS CFX 11.0 which is commercial numerical tool. Repulsive force when there is radial displacement in bearing and returning time is calculated using steady and unsteady cases. Auto re-meshing technic is used for moving mesh unsteady cases which simulate displacement of axis and its movement. The simulation results are used for further design of micro gas turbine, and experiment will be done later.

  • PDF

A Study on the Journal Orbit in the Bearing of Engine Crankshaft (엔진 크랭크축의 베어링내에서 저어널의 운동궤적에 관한 연구)

  • 한동철;송기선
    • Tribology and Lubricants
    • /
    • v.2 no.1
    • /
    • pp.69-77
    • /
    • 1986
  • The motion of journal in a bearing is considered separately as rotation and translation, and then the equations of motion are derived. The bearing load capacities for these motions are calculated from the lubrication theory. The numeric integration of the equations of motion gives various journal orbit depending on force cycles and bearing parameters.