• 제목/요약/키워드: Bearing damage

검색결과 407건 처리시간 0.023초

Strength degeneracy of LWAC and flexural behavior of LWAC members after fire

  • Tang, Chao-Wei
    • Computers and Concrete
    • /
    • 제20권2호
    • /
    • pp.177-184
    • /
    • 2017
  • The characteristics of lightweight aggregate (LWA) with a low specific gravity and high water absorption will significantly change the properties of lightweight aggregate concrete (LWAC). This study aimed at exploring the effect of presoaking degree of LWA on the strength degeneracy of LWAC and flexural behavior of LWAC members exposed to elevated temperatures. The residual mechanical properties of the LWAC subjected to elevated temperatures were first conducted. Then, the residual load tests of LWAC members (beams and slabs) after exposure to elevated temperatures were carried out. The test results showed that with increasing temperature, the decreasing trend of elastic modulus for LWAC was considerably more serious than the compressive strength. Besides, the presoaking degree of LWA had a significant influence on the residual compressive strength and elastic modulus for LWAC after exposure to $800^{\circ}C$. Moreover, owing to different types of heating, the residual load bearing capacity of the slab specimens were significantly different from those of the beam specimens.

크랙이 존재하는 탄소/탄소 브레이크 디스크의 실험적/해석적 안정성 판별 (Safety Estimation of the Carbon/Carbon Brake Disk Having Crack by Experimental/Analytical Method)

  • 오세희;유재석;김천곤;홍창선;박종현
    • Composites Research
    • /
    • 제15권2호
    • /
    • pp.24-31
    • /
    • 2002
  • 본 논문에서는 탄소/탄소 브레이크 디스크의 시험 운용중에 키 슬롯부위의 하중지지부와 마찰재 사이에서 발생하는 크랙의 안정성에 대한 연구를 수행하였다. 이렇게 발생한 디스크 크랙의 안정성을 판별하기 위하여, 발생한 여러 가지 모양의 크랙에 대하여 충격을 고려한 반복하중실험 수행하였다. 또한 유한요소해석을 수행하여 크랙 팁(tip)의 음력집중현상과 진전가능성을 살펴보았다. 이와 같은 방법으로 디스크가 안정함을 확인하였다.

발전설비의 터빈 축정력 (I) : 발전소 적용 사례 (Turbine Alignment (I) : Case Study in th Electronic Power Plant Application)

  • 황철호;김정태;전오성;이병준;이현
    • 소음진동
    • /
    • 제4권1호
    • /
    • pp.23-31
    • /
    • 1994
  • When a shaft is misaligned, a high level of vibration is experienced. As a consequence, the system performance could be low with high level of noise generated. Even, a catastrophic damage of the rotating machinery may happen in the worst situation. The vibration caused by the shaft misalignment is not cured unless a correct alignment of the shaft is investigated. In this paper, a step by step approach for the turbine alignment has been demonstrated. It includes measurement tips of the coupling rim and face, calculation procedure of the bearing level, and the relevant values of the addition and subtration for shims in order to align the shaft level correctly. Then, as an application of the shaft alignment, the turbine system at the Pyung Tek focile electric power plant has been examined. Since the real system consists of high pressure, low pressure turbines and the generator, detailed alignment prolcedures of the multi stage shaft system has been demonstrated.

  • PDF

FE assessment of dissipative devices for the blast mitigation of glazing façades supported by prestressed cables

  • Amadioa, Claudio;Bedon, Chiara
    • Structural Engineering and Mechanics
    • /
    • 제51권1호
    • /
    • pp.141-162
    • /
    • 2014
  • The paper focuses on the dynamic response of a blast-invested glass-steel curtain wall supported by single-way pretensioned cables. In order to mitigate the critical components of the façade from severe structural damage, an innovative system able to absorb and dissipate part of the blast-induced stresses in the critical façade components is proposed. To improve the blast reliability of the studied glazing system, specifically, rigid-plastic and elastoplastic devices are introduced at the base and at the top of the vertical bearing cables. Several combinations and mechanical calibrations of these devices are numerically investigated and the most structurally and economically advantageous solution is identified. In conclusion, a simple analytical formulation totally derived from energetic considerations is also suggested for a preliminary estimation of the maximum dynamic effects in single-way cable-supported façades subjected to high-level blast loads.

An engineering-based assessment methodology on the loss of residential buildings under wind hazard

  • Li, Mingxin;Wang, Guoxin
    • Wind and Structures
    • /
    • 제30권1호
    • /
    • pp.1-13
    • /
    • 2020
  • The loss prediction and assessment during extreme events such as wind hazards is always crucial for the group low-rise residential buildings. This paper analyses the effect of variation in building density on wind-induced loss for low-rise buildings and proposes a loss assessment method consequently. It is based on the damage matrices of the building envelope structures and the main load-bearing structure, which includes the influence factors such as structure type, preservation degree, building density, and interaction between different envelope components. Accordingly, based on field investigation and engineering experience, this study establishes a relevant building direct economic loss assessment model. Finally, the authors develop the Typhoon Disaster Management System to apply this loss assessment methodology to practice.

Zircaloy-4 피복관 부레이징 계면의 베릴륨 분석 (Beryllium Analysis on the Brazing Zone of Zircaloy-4 Cladding)

  • Lee, Key-Soon;Lee, Byong-Whi
    • Nuclear Engineering and Technology
    • /
    • 제21권4호
    • /
    • pp.341-345
    • /
    • 1989
  • Zircaloy-4 피복관의 조사손상에 영향을 줄 수 있는 부레이징 계면의 베릴륨 분포거동을 EPMA의 X-선 선분석으로 조사하여 다음과 같은 결과를 얻었다. 1) 부레이징에 의해 생성된 합금상의 베릴륨 함유량은 ~6.3mass%이었다. 2) 베릴륨의 기지금속(피복관 및 베어링 패드)내 확산은 부레이징 계면으로부터 ~5$\mu$m범위 외에서는 무시될 수 있었다.

  • PDF

외부프리스트레스트 보강 공법에 사용되는 단부 브라켓의 개발 연구 (A Study on Development of End Bracket for External Prestress Method)

  • 한만엽;이재형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.721-726
    • /
    • 1999
  • Diverse strengthening methods for reinforced concrete are applied to real structures with a variety of materials. On the other hand, only external prestressing is used for strengthening damaged prestressed concrete girders. But the end brackets for external prestressing are hard to design and to manufacture, the magnitude of prestressing is limited when applied to real structures. The current end brackets are not clearly understood in load transmitting mechanisms and they may damage the original girder by drilling during construction. And also the designed welding area of the current bracket is insufficient to support the high load. The problems of current end bracket are solved in this study. And a new and improved end bracket is proposed and tested. The tested end bracket is similar to the end bearing bracket, but many supportting plates are addded to increase its welding length of the weakest point of the bracket. The increased welding length finally increases its load carrying capacity significantly.

  • PDF

초음속 항공기용 복합재 플래퍼론의 구조설계 및 해석 (Structural Design and Analysis of Composite Flaperon for a Supersonic Aircraft)

  • 이명수;권진회;강기환;이광영
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.116-120
    • /
    • 2004
  • A metal flaperon of a supersonic aircraft including the ribs, and skins was re-designed with a graphite/epoxy composite material to evaluate the weight saving effect. MSC/NASTRAN was used for the finite element analysis. The safety of the composite structures were evaluated in terms of the failure index, section cut, buckling, bearing/bypass and durability and damage tolerance analysis. After the application of the composite material, total weight saving of 25.6 pounds was achieved.

  • PDF

레이저 범프와 대기압 변화에 대한 하드디스크 슬라이더의 부상 특성 (Take Off Characteristics of Slider for Various LZT Disks and Ambient Pressures)

  • 이상민;김대은
    • 대한기계학회논문집A
    • /
    • 제24권10호
    • /
    • pp.2646-2653
    • /
    • 2000
  • The performance of slider of a hard disk drive affects the durability of the system. Particularly, the flying ability of the slider is critical in terms of surface damage and head crash. In this work, the take-off characteristics of the slider for various types of laser zone textured bump geometries were investigated. Also, the effect of ambient pressure on the flying characteristics of the slider was experimentally observed. An index of air density which can be used as a parameter for evaluating the flying characteristic is introduced.

Seismic performance of RCS beam-column joints using fiber reinforced concrete

  • Nguyen, Xuan Huy;Le, Dang Dung;Nguyen, Quang-Huy;Nguyen, Hoang Quan
    • Earthquakes and Structures
    • /
    • 제18권5호
    • /
    • pp.599-607
    • /
    • 2020
  • This paper deals with the experimental investigation on the behavior of RCS beam-column exterior joints. Two full-scale specimens of joints between reinforced concrete columns and steel beams are tested under cyclic loading. The objective of the test is to study the effect of steel fiber reinforced concrete (SFRC) on the seismic behavior of RCS joints. The load bearing capacity, story drift capacity, ductility, energy dissipation, and stiffness degradation of specimens are evaluated. The experimental results point out that the FRC joint is increased 20% of load carrying capacity and 30% of energy dissipation capacity in comparison with the RC joint. Besides, the FRC joint shown lower damage and better ductility than RC joint.