• Title/Summary/Keyword: Bearing Support

Search Result 413, Processing Time 0.029 seconds

Effect of Film-Temperature Boundary Conditions on the Lubrication Performance of Parallel Slider Bearing (유막온도경계조건이 평행 슬라이더 베어링의 윤활성능에 미치는 영향)

  • Park, TaeJo;Kim, MinGyu
    • Tribology and Lubricants
    • /
    • v.33 no.5
    • /
    • pp.207-213
    • /
    • 2017
  • In sliding bearings, viscous friction due to high shear acting on the bearing surface raises the oil temperature. One of the mechanisms responsible for generating the load-carrying capacity in parallel surfaces is known as the viscosity wedge effect. In this paper, we investigate the effect of film-temperature boundary conditions on the thermohydrodynamic (THD) lubrication of parallel slider bearings. For this purpose, the continuity equation, Navier-Stokes equation, and the energy equation with temperature-viscosity-density relations are numerically analyzed using the commercial computational fluid dynamics (CFD) code FLUENT. Two different film-temperature boundary conditions are adopted to investigate the pressure generation mechanism. The temperature and viscosity distributions in the film thickness and flow directions were obtained, and the factors related to the pressure generation in the equation of motion were examined in detail. It was confirmed that the temperature gradients in the film and flow directions contribute heavily to the thermal wedge effect, due to which parallel slider bearing can not only support a considerable load but also reduce the frictional force, and its effect is significantly changed with the film-temperature boundary conditions. The present results can be used as basic data for THD analysis of surface-textured sliding bearings; however, further studies on various film-temperature boundary conditions are required.

The Effects of Geometrical Imperfections on the Dynamic Characteristics of a Tapered Roller Bearing Cage (테이퍼 롤러 베어링 케이지의 불완전성이 통특성에 미치는 영향)

  • Ahn, Tae-Kil;Park, Jang-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.464-469
    • /
    • 2019
  • Tapered roller bearings are used widely in vans, trucks, and trains because they can support the vehicle in a stable manner even under a heavy load. The cage of a tapered roller bearing maintains the gap between the rollers, which prevents friction wear and suppresses heating. If the cage is severely deformed due to resonance, the roller may not be able to roll smoothly and even leave the cage. Consequently, it is very important to analyze the dynamic characteristics of the cage for reliable performance of a bearing. The cage essentially has geometrical tolerance in the manufacturing process. In this paper, the effects of those geometrical imperfections on the dynamic characteristics of the cage were investigated. As a result, natural frequency separation occurred near the natural frequency of the ideal cage due to geometrical imperfections. In addition, the interval was proportional to the magnitude of the geometric error, and the interval increased with increasing mode number.

Behavioral Analysis of Triaxial Micropile (TMP) through Field Loading Test and 3D-numerical Analysis (삼축 마이크로파일(TMP)의 현장수평재하시험과 3차원 수치해석을 통한 거동 분석)

  • Kim, Taehyun;Ahn, Kwangkuk;An, Sungyul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.4
    • /
    • pp.15-23
    • /
    • 2021
  • Various micropiles have been developed through research related to micropiles, which have been carried out with the increased use of micropiles. Among the micropile construction methods being developed, the triaxial micropile (tmp), which is recently developed for the purpose of increasing the horizontal bearing capacity (seismic resistance), is representative. The three-axis micropile has the advantage of a method that can resist horizontal load more effectively because three micropiles installed inclined on each axis resist horizontal load. However, there is a problem in effectively using this pile method due to insufficient research on the support characteristics of the triaxial group micropile. In order to effectively utilize the triaxial group micropile (tmp), it is required to evaluate the bearing capacity for the factors that affect the horizontal bearing capacity of the pile. Therefore, in this study, field horizontal loading Tests were performed for each load direction, field loading Tests were verified through three-dimensional finite element analysis, behavioral characteristics of triaxial micropiles were evaluated, and appropriate horizontal bearing capacity was analyzed in consideration of horizontal load directions.

Correlation Analysis Between Chemical Degradation Characteristics of Grease and Degradation Characteristics of Bearing Through Durability Test (내구시험을 통한 베어링의 열화 특성과 그리스의 화학적 열화 특성 연관성 분석)

  • Kang, Bo-Sik;Lee, Choong-Sung;Ryu, Kyung-Ha
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1239-1246
    • /
    • 2022
  • This paper introduces the effect of grease on the degradation characteristics of bearings used as key components of packaging equipment and automation systems. Bearings parts are installed to fix and support the rotating body of the system, and performance degradation of the bearings has a great effect on the life of the system too. When bearings are used in various devices and systems, the grease is applied to reduce friction and improve fatigue life. Determining the type of lubricant (grease) is important because it has a great influence on the operating environment and lifespan and ensures long lifespan of systems and facilities. However, studies that simultaneously compared and analyzed the change in mechanical degradation characteristics and the comparison of chemical degradation characteristics according to grease types under actual operating conditions are insufficient. In this paper, three types of small harmonic drive, high-load reducer, and low-load reducer grease used in power transmission joint modules are experimentally selected and finally injected into ball bearings with a load (19,500N) to improve bearing durability. Degradation characteristics were tested by attaching to test equipment. At this time, after the durability test under the same load conditions, the mechanical degradation characteristics, that is temperature, vibration according to the three greases types. In addition, the chemical degradation characteristics of the corresponding grease was compared to present the results of mutual correlation analysis.

Effects of Surface Roughness on the Performance of a Gas Foil Thrust Bearing (표면 거칠기가 가스 포일 스러스트 베어링의 성능에 미치는 영향)

  • Sung Ho Hwnag;Dae Yeon Kim;Tae Ho Kim
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.81-85
    • /
    • 2023
  • This study presents an experimental investigation of the effects of surface roughness on gas foil thrust bearing (GFTB) performance. A high-speed motor with the maximum speed of 80 krpm rotates a thrust runner and a pneumatic cylinder applies static loads to the test GFTB. When the motor speed increases and reaches a specific speed at which a hydrodynamic film pressure generated within the gap between the thrust runner and test GFTB is enough to support the applied static load, the thrust runner lifts off from the test GFTB and the friction mechanism changes from the boundary lubrication to the hydrodynamic lubrication. The experiment shows a series of lift-off test and load-carrying capacity test for two thrust runners with different surface roughnesses. For a constant static load of 15 N, thrust runner A with its lower surface roughness exhibits a higher start-up torque but lower lift-off torque than thrust runner B with a higher surface roughness. The load capacity test at a rotor speed of 60 krpm reveals that runner A results in a higher maximum load capacity than runner B. Runner A also shows a lower drag torque, friction coefficient, and bearing temperature than runner B at constant static loads. The results imply that maintaining a consistent surface roughness for a thrust runner may improve its static GFTB performance.

Reinforcing Effect of Micropiles According to the Cohesive Characteristics of the Soil Layer Beneath Foundations (파일직경과 기초하부 토사층의 점착특성에 따른 마이크로파일 보강효과)

  • Jang, Chang-Hwan;Kim, Mu-Yeun;Hwang, Tae-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.41-53
    • /
    • 2024
  • Micropiles are small, cast-in-place piles with a diameter of 300 mm or less, primarily used to reinforce existing structures and support new constructions. As the application of these piles has expanded, extensive research has been conducted on their bearing characteristics, particularly in micropiled rafts. These studies have consistently demonstrated the positive impact of micropiles on foundation reinforcement. However, previous research often overlooked the potential variations in behavior between micropiled and conventional piled rafts based on different pile conditions. Furthermore, the influence of the cohesive characteristics of the soil layer beneath the foundation on the reinforcing effect of the micropiles has not been adequately addressed. This study, therefore, undertook 3D numerical analysis to assess the reinforcing effect of micropiles, considering both pile conditions and the cohesive characteristics of the soil layer beneath the foundation. The findings revealed that micropiles are significantly more effective in non-cohesive soil layers compared to cohesive ones, with the potential to increase the bearing capacity of the raft by up to 3.7 times.

A study on the structural behaviour of shotcrete and concrete lining by experimental and numerical analyses (숏크리트 및 콘크리트 라이닝의 역학적 거동에 관한 실험 및 수치해석적 연구)

  • 김재순;김영근
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.307-320
    • /
    • 1998
  • Tunnel lining is the final support of a tunnel and reflects the results of the interaction between ground and support system. Recently it is very difficult to support and manage the tunnel because the cracks on tunnel lining cause many problems in supporting and managing tunnels. Therefore the analysis of the cracks is quite strongly required. In this study, mechanical behaviour of a tunnel lining was examined by model tests and by numerical analyses. Especially the model test was examined for double linings including shotcrete and concrete lining. The model tests were carried out under various conditions taking different loading shapes, horizontal stresses, thicknesses of linings and double lining, vault opening behind the concrete lining and rock-like medium surrounding the lining. Due to horizontal stress, compressive stress prevailed on the lining. Thus the bearing capacity of the lining increased. The existence of a vault opening behind the concrete lining reduced the bearing capacity by the similar amount of reduction of concrete lining thickness. Rock-like medium cast around the side wall of the lining restrained the deflection of the lining, and the bearing capacity for cracking and failure increased vary much. In numerical analyses a algorithm which can analysis the double lining by introduction of interface element was developed. And the results of the numerical analyses were compared with the results of the model tests.

  • PDF

A Compatibility Study on Blank Support Structure for Large and Curved Thick Plate Forming (대곡면 후곡판 성형을 위한 블랭크 지지구조의 적합성 연구)

  • Lim, M.R.;Kwak, B.S.;Kang, B.S.;Ku, T.W.
    • Transactions of Materials Processing
    • /
    • v.28 no.6
    • /
    • pp.335-346
    • /
    • 2019
  • Thick plate forming is presented to manufacture a large and curved member of steam turbine diaphragm. Due to three-dimensional asymmetry of target geometry, it is hard to consistently keep the blank position in die cavity between forming punch and die. In order to relieve the position instability of the blank during the thick plate forming, a blank support structure is proposed to be composed of guide pins and linear bearing, and blank guide arm enlarged from both longitudinal ends of the thick blank. In this study, parametric investigations with regard to the geometric position and width of the blank guide arm are carried out. As main geometric parameters, 2 positions such as maximum curvature region and minimum one on a curved cross-section profile of the target shape are selected, and 14 widths of the blank guide arm are considered. Using 28 variable combinations, three-dimensional numerical simulations are performed to predict the appropriate range of the process parameters. The compatibility and validity of the blank support structure with the blank guide arm for the thick plate forming is verified through the thick plate forming experiments.

Analysis of Childcare Support Policies and Fertility Rates of the OECD Countries: Focusing on Cash-support Policies, Child-care Facility Policies, and Tax Benefits Policies (OECD 국가의 양육지원 정책과 출산율 분석: 현금지원 정책, 보육시설서비스 정책, 조세혜택 정책을 중심으로)

  • Kang, Kyoung Hee;Jun, Hong-Ju
    • Korean Journal of Childcare and Education
    • /
    • v.9 no.6
    • /
    • pp.197-221
    • /
    • 2013
  • The purpose of this study was to examine the relationship between the child care support policies and the birth rate in 33 OECD countries. In the structural equation modelling, the birth rate was the dependent variable while the cash-support policies, the child-care facility service policies, and the tax benefits policies were the independent variables. The analysis showed that the most effective factor on the birth rate was the child-care facility service policies. Regarding the effectiveness of the policy expenses, the cash-support policies showed stable fluctuation of effectiveness according to the fluctuation of cash amount, the child-care facility service policies. In conclusion, in order to increase the effectiveness of the cash-support policies, the adequate cost calculation to decrease the parents' burden for child-bearing, re-allocation of budget, and support methods and timing should be continually discussed. In addition, for the better effectiveness of the facility service policies, more various, comprehensive and high-quality facility service policies that could balance home and work, should be implemented.

Seismic Design of Building Using LRB(Lead Rubber Bearing) (납 면진받침을 적용한 건축물의 내진 설계)

  • 김두훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.258-265
    • /
    • 1998
  • Seismic isolation has developed to the point where it may be considered as a viable design alternate for a wide range of building structures. However, it needs to consider various aspects to adopt a suitable isolation system for buildings practically. This report presents the basis for the preliminary design procedure which has been developed for the seismic isolation system using the lead rubber bearings. The design procedures have been developed to ensure that the bearings will safely support the maximum gravity load throughout the life of the structure while they provide a period shift and hysteretic damping during the design earthquake.

  • PDF