• Title/Summary/Keyword: Beam-end test

Search Result 217, Processing Time 0.032 seconds

Investigation on the Effective Moment of Inertia of Reinforced Concrete Flexural Members Under Service Load (사용하중 상태에서 철근콘크리트 휨부재의 유효 단면2차모멘트에 대한 고찰)

  • Lee, Seung-Bea;Park, Mi-Young;Jang, Su-Youn;Kim, Kang-Su;Kim, Sang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.393-404
    • /
    • 2008
  • The approaches in many design codes for the estimation of the deflection of flexural reinforced concrete (RC) members utilize the concept of the effective moment of inertia which considers the reduction of flexural rigidity of RC beams after cracking. However, the effective moment of inertia in design codes are primarily based on the ratio of maximum moment and cracking moment of beam subjected to loading without proper consideration on many other possible influencing factors such as span length, member end condition, sectional size, loading geometry, materials, sectional properties, amount of cracks and its distribution, and etc. In this study, therefore, an experimental investigation was conducted to provide fundamental test data on the effective moment of inertia of RC beams for the evaluation of flexural deflection, and to develop a modified method on the estimation of the effective moment of inertia based on test results. 14 specimens were fabricated with the primary test parameters of concrete strength, cover thickness, reinforcement ratio, and bar diameters, and the effective moments of inertia obtained from the test results were compared with those by design codes, existing equations, and the modified equation proposed in this study. The proposed method considered the effect of the length of cracking region, reinforcement ratio, and the effective concrete area per bar on the effective moment of inertia, which estimated the effective moment of inertia more close to the test results compared to other approaches.

Dimension Stability by Bonding Layers of Glulam (집성재의 접착층수에 따른 치수안정성)

  • Hwang, Kweonhwan;Park, Joo-Saeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.88-95
    • /
    • 2008
  • The shrinkage of wood members after construction has been a greater and common concern in wooden buildings with the durability. Particularly, the traditional structure applying solid members actively is easily exposed to the shrinkage that caused by the joints, members, and walls. Moreover, even though domestic larch glulam members are widespread recently in the post-beam construction, the shrinkage (swelling) problem is still the critical defect on the wooden structures by the moisture content change in Korea. Various moisture contents were applied for the specimens to survey the dimensional changes for Japanese larch solid and glulam specimens, and the glulam specimens varied in the number of their laminations. Test results showed that glulam specimens with over 3 bonding layers showed good dimension stabilities. Therefore, to solve the shrinkage problem, sufficient drying fitted to the end-use service conditions should be conducted on the solid or glulam members can be applied.

Development of Polarization-Controllable Active Phased Array Antenna for Receiving Satellite Broadcasting (편파가변 위성 방송 수신용 능동 위상 배열 안테나 개발)

  • Choi, Jin-Young;Lee, Ho-Seon;Kong, Tong-Ook;Chun, Jong-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.325-335
    • /
    • 2018
  • We herein present a study on the active phased array antenna for receiving satellite broadcasting that can electrically align its polarization to that of target transmitters in its moving condition or in the Skew angle arrangement of the broadcasting satellite receiver. Hence, we have developed an active phased array structure composed of the self-developed Vivaldi antenna and multifunction core (MFC) chip, receiving RF front end module, and control units. In particular, the new Vivaldi antenna designed in the Ku-band of 10.7 - 14.5 GHz to receive one desired polarization mode such as the horizontal or vertical by means of an MFC chip and other control units that can control the amplitude and phase of each antenna element. The test results verified that cross-polarization property is 20 dB or higher and the primary beam can be scanned clearly at approximately ${\pm}60^{\circ}$.

The Effect of Therapeutic Exercise on Brain-Derived Neurotrophic Factor After Global Brain Ischemia in Rats (흰쥐의 전뇌허혈 후 재관류 시 운동치료에 의한 신경영양성인자 발현)

  • Gu, Sang-Hun;Song, Ju-Young;Kown, Young-Shil;Nam, Ki-Won;Song, Ju-Min;Lee, Yun-Seob;Choi, Jin-Ho;Kim, Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.2
    • /
    • pp.281-292
    • /
    • 2001
  • This study was performed to investigate the effect of therapeutic exercise on brain-derived neurotrophic factor manifestation after global brain ischemia in rats. Nine rats with global ischemia were divided at random into two group. In the control group, three rats remained in cage. But, in the end, two rats were alive. In the therapeutic exercise group, six rats remained. The five rats of this group was swam for 30 minutes everyday for a week. The brain-derived neurotrophic factor expression was identified from immunohistochemistry. The results of this study were as follows : 1. In the control group, a little expression of brain-derived neurotrophic factor was observed at cortex and hippocampus layer, but cell body and axon was observed obscurely. 2. In the experimental group, a much expression of brain-derived neurotrophic factor was observed at cortex and hippocampus layer, and cell body and axon was observed clearly. In the neurological examination(beam-walking test). experimental group was obtained higher 1.4 points than control group. BDNF expression was increased by swimming for 30 minutes everyday for a week. Therefore, therapeutic exercise contribute to brain plasticity after brain ischemia.

  • PDF

Evaluation on the Shear Performance of U-type Precast Prestressed Beams (U형 PSC보외 전단거동 평가)

  • Yu Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.10-17
    • /
    • 2004
  • Shear tests were performed on four ends of full scale U-type beams which were designed by optimum process for the depth with a live load of 4903Pa. The ratio of width to depth of full scale 10.5 m-span, composite U-type beams with topping concrete was greater than 2. Following conclusions were obtained from the evaluation on the shear performance of these precast prestressed beams. 1) Those composite U-type beams performed homogeneously up to the failure load, and conformed to ACI Strength design methods in shear and flexural behaviors. 2) The anchorage requirements on development length of strand In the ACI Provisions preyed to be a standard to determine a failure pattern within the limited test results of the shallow U-type beams. 3) Those all shear crackings developed from the end of the beams did not lead to anchorage failure. However, initiated strand slip may leads the bond failure by increasing the size of diagonal shear crackings. 4) The flexural mild reinforcement around the vertical center of beam section was effective for developments of a ductile failure.

Fabrication and Performance Evaluation of a Scintillating Film-based Gamma Imaging Detector to Measure Gamma-ray Distribution (감마선 분포 측정을 위한 섬광필름 기반의 감마 영상 검출기 제작 및 성능평가)

  • Shin, Sang Hun;Yoo, Wook Jae;Jang, Kyoung Won;Cho, Seunghyun;Lee, Bongsoo
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.202-207
    • /
    • 2015
  • As a feasibility study on development of a gamma imaging probe, we developed a scintillating film-based gamma imaging detector that can obtain scintillation images with information of gamma-ray distribution. The scintillating film-based gamma imaging detector was composed of a sensing probe, an image intensifier, and a beam profiler. To detect and transmit scintillation image, the sensing probe was fabricated by coupling a scintillating film, a fiber-optic image conduit, and a fiber-optic taper, consecutively. First, the optical images of USAF 1951 resolution target were obtained and then, modulation transfer function values were calculated to test the image quality of the sensing probe. Second, we measured the scintillation images according to the activity of the 137Cs and the distance between the surface of 137Cs and the distal-end of sensing probe. Finally, the intensities of scintillating light as functions of the activity and the distance were evaluated from the region of interest in the scintillation image. From the results of this study, it is expected that a fiber-optic gamma imaging detector can be developed to detect gamma-rays emitted from radiopharmaceuticals during radioimmunoguided surgery.

A hybrid identification method on butterfly optimization and differential evolution algorithm

  • Zhou, Hongyuan;Zhang, Guangcai;Wang, Xiaojuan;Ni, Pinghe;Zhang, Jian
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.345-360
    • /
    • 2020
  • Modern swarm intelligence heuristic search methods are widely applied in the field of structural health monitoring due to their advantages of excellent global search capacity, loose requirement of initial guess and ease of computational implementation etc. To this end, a hybrid strategy is proposed based on butterfly optimization algorithm (BOA) and differential evolution (DE) with purpose of effective combination of their merits. In the proposed identification strategy, two improvements including mutation and crossover operations of DE, and dynamic adaptive operators are introduced into original BOA to reduce the risk to be trapped in local optimum and increase global search capability. The performance of the proposed algorithm, hybrid butterfly optimization and differential evolution algorithm (HBODEA) is evaluated by two numerical examples of a simply supported beam and a 37-bar truss structure, as well as an experimental test of 8-story shear-type steel frame structure in the laboratory. Compared with BOA and DE, the numerical and experimental results show that the proposed HBODEA is more robust to detect the reduction of stiffness with limited sensors and contaminated measurements. In addition, the effect of search space, two dynamic operators, population size on identification accuracy and efficiency of the proposed identification strategy are further investigated.

Seismic Performance Evaluation of Non-Seismic Reinforced Concrete Buildings Strengthened by Perimeter Steel Moment Frame (철골 모멘트골조로 보강된 철근콘크리트 건물의 내진성능 평가)

  • Kim, Seonwoong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.233-241
    • /
    • 2020
  • This paper is to investigate the retrofitting effect for a non-seismic reinforced concrete frame strengthened by perimeter steel moment frames with indirect integrity, which ameliorates the problems of the direct integrity method. To achieve this, first, full-scale tests were conducted to address the structural behavior of a two-story non-seismic reinforced concrete frame and a strengthened frame. The non-seismic frame showed a maximum strength of 185 kN because the flexural-shear failure at the bottom end of columns on the first floor was governed, and shear cracks were concentrated at the beam-column joints on the second floor. The strengthened frame possessed a maximum strength of 338 kN, which is more than 1.8 times that of the non-seismic specimen. A considerable decrease in the quantity of cracks for the strengthened frame was observed compared with the non-seismic frame, while there was the obvious appearance of the failure pattern due to the shear crack. The lateral-resisting capacity for the non-seismic bare frame and the strengthened frame may be determined per the specified shear strength of the reinforced columns in accordance with the distance to a critical section. The effective depth of the column may be referred to as the longitudinal length from the border between the column and the foundation. The lateral-resisting capacity for the non-seismic bare frame and the strengthened frame may be reasonably determined per the specified shear strength of the reinforced columns in accordance with the distance to a critical section. The effective depth of the column may be referred to as the longitudinal length from the border between the column and the foundation. The proposed method had an error of about 2.2% for the non-seismic details and about 4.4% for the strengthened frame based on the closed results versus the experimental results.

Push-out tests on demountable high-strength friction-grip bolt shear connectors in steel-precast UHPC composite beams for accelerated bridge construction

  • Haibo, Jiang;Haozhen, Fang;Jinpeng, Wu;Zhuangcheng, Fang;Shu, Fang;Gongfa, Chen
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.797-818
    • /
    • 2022
  • Steel-precast ultra-high-performance concrete (UHPC) composite beams with demountable high-strength friction-grip bolt (HSFGB) shear connectors can be used for accelerated bridge construction (ABC) and achieve excellent structural performance, which is expected to be dismantled and recycled at the end of the service life. However, no investigation focuses on the demountability and reusability of such composite beams, as well as the installation difficulties during construction. To address this issue, this study conducted twelve push-out tests to investigate the effects of assembly condition, bolt grade, bolt-hole clearance, infilling grout and pretension on the crack pattern, failure mode, load-slip/uplift relationship, and the structural performance in terms of ultimate shear strength, friction resistance, shear stiffness and slip capacity. The experimental results demonstrated that the presented composite beams exhibited favorable demountability and reusability, in which no significant reduction in strength (less than 3%) and stiffness (less than 5%), but a slight improvement in ductility was observed for the reassembled specimens. Employing oversized preformed holes could ease the fabrication and installation process, yet led to a considerable degradation in both strength and stiffness. With filling the oversized holes with grout, an effective enhancement of the strength and stiffness can be achieved, while causing a difficulty in the demounting of shear connectors. On the basis of the experimental results, more accurate formulations, which considered the effect of bolt-hole clearance, were proposed to predict the shear strength as well as the load-slip relationship of HSFGBs in steel-precast UHPC composite beams.

Experimental Evaluation on Shear Strength of High-Strength RC Deep Beams (고강도 철근콘크리트 깊은 보의 전단 강도에 관한 실험평가)

  • Lee, Woo-Jin;Yoon, Seung-Joe;Kim, Seong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.689-696
    • /
    • 2003
  • Recently, Appendix A of ACI 318∼02 Code introduced the Strut-and-Tie Model(STM) procedure in shear design of deep flexural members. The STM procedure is widely used in the design of concrete regions where the distribution of longitudinal strains is significantly nonlinear, such as deep beams, beams with large openings, corbels, and dapped-end beams. Experimental study included five high-strength reinforced concrete deep beams with different detailing schemes for the horizontal and vertical reinforcement. The specimens were designed as simply supported beams subjected to concentrated loads on the top face and supported on the bottom face. At failure, all specimen exhibited primary diagonal crack running from the support region to the point load. Specimens which had mechanical anchorages(terminators) gives better representation of the load-carrying mechanism than the specimen had standard 90-degree anchorage at failure in deep flexural members. Based on the test results, shear design procedures contained in the ACI 318-99 Code, Appendix A of the ACI 318-02 Code, CSA A23.3-94 Code and CIRIA Guide-2 were evaluated. The Shear design of ACI 318-99 Code, Appendix A of the ACI 318-02 Code and CIRIA Guide-2 shown to be conservative predictions from 10% to 36% in the shear strength of the single-span deep beam which was tested. ACI 318-99 Code was the lowest standard deviation.