• 제목/요약/키워드: Beam-Columns

검색결과 508건 처리시간 0.026초

기둥의 철근비와 축변형량이 보 해석에 미치는 영향 연구 (Effect of Longitudinal Reinforcement Ratios and Axial Deformation on Frame Analysis in RC Columns)

  • 장원석;민창식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.477-482
    • /
    • 2001
  • This paper is to study the effect of longitudinal reinforcement ratios and axial deformation on the frame analysis in reinforced concrete(RC) columns and to investigate the effect of confined concrete core, the length-width ratio and longitudinal steel ratios on frame analysis in Concrete-Filled steel Tubular(CFT) columns. An equation if derived to evaluate the modulus of elasticity for core concrete. The 34 reference data have been collected for the purpose and are processed by the mean of a multiple regression analysis technique. The equation and longitudinal reinforcement ratios was applied to RC columns for structural analysis. Then, the difference of beam moment was identified. In general, the results of analysis was indicated reasonable differences in beam moment, in case of longitudinal reinforcement ratios applied to RC columns when compared with the plain concrete columns. In CFT columns the equation was also applied in order to the effect of confined concrete core on structural analysis. Beam moment was increased as volumetric ratio of lateral steel was decreased. The effect of longitudinal steel ratios was investigated in CFT columns and was confirmed beam moment variety. The result was appeared reasonable difference in beam moment as longitudinal steel was increased.

  • PDF

An alternative evaluation of the LTB behavior of mono-symmetric beam-columns

  • Yilmaz, Tolga;Kirac, Nevzat;Anil, O zgur
    • Steel and Composite Structures
    • /
    • 제30권5호
    • /
    • pp.471-481
    • /
    • 2019
  • Beam-columns are structural members subjected to a combination of axial and bending forces. Lateral-torsional buckling is one of the main failure modes. Beam-columns that are bent about its strong axis may buckle out of the plane by deflecting laterally and twisting as the values of the applied loads reach a limiting state. Lateral-torsional buckling failure occurs suddenly in beam-column elements with a much greater in-plane bending stiffness than torsional or lateral bending stiffness. This study intends to establish a unique convenient closed-form equation that it can be used for calculating critical elastic lateral-torsional buckling load of beam-column in the presence of a known axial load. The presented equation includes first order bending distribution, the position of the loads acting transversely on the beam-column and mono-symmetry property of the section. Effects of axial loads, slenderness and load positions on lateral torsional buckling behavior of beam-columns are investigated. The proposed solutions are compared to finite element simulations where thin-walled shell elements including warping are used. Good agreement between the analytical and the numerical solutions is demonstrated. It is found out that the lateral-torsional buckling load of beam-columns with mono-symmetric sections can be determined by the presented equation and can be safely used in design procedures.

스테인리스 각형강관기둥의 최대내력 (The Maximum Strength of Stainless Steel Rectangular Hollow Section Columns and Beam-Columns)

  • 이명재;김희동
    • 한국강구조학회 논문집
    • /
    • 제17권1호통권74호
    • /
    • pp.73-82
    • /
    • 2005
  • 본 논문은 스테인리스강이 건축구조용으로 이용될 때 중심압축재와 기둥의 최대내력을 수치해석으로 조사한 것이다. STS304의 소재인장시험결과로부터 응력-변형도 관계를 모델화하여 최대내력에 미치는 영향을 조사하였으며 강구조 한계상태설계기준식과의 비교를 시도하였다. 스테인리스강을 건축구조용으로 사용하기 위해서는 별도의 설계기준식이 필요하다는 점이 확인되었다.

일정체적을 갖는 포물선형 중공 보-기둥의 자유진동 해석 (Free Vibration Analysis of Parabolic Hollowed Beam-columns with Constant Volume)

  • 이태은;이병구
    • 한국소음진동공학회논문집
    • /
    • 제21권4호
    • /
    • pp.384-391
    • /
    • 2011
  • This paper deals with free vibrations of the parabolic hollowed beam-columns with constant volume. The cross sections of beam-column taper are the hollowed regular polygons whose depths are varied with the parabolic functional fashion. Volumes of the objective beam-columns are always held constant regardless given geometrical conditions. Ordinary differential equation governing free vibrations of such beam-columns are derived and solved numerically for determining the natural frequencies. In the numerical examples, hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. As the numerical results, the relationships between non-dimensional frequency parameters and various beam-column parameters such as end constraints, side number, section ratio, thickness ratio and axial load are reported in tables and figures.

비균질 탄성지반 위에 놓인 보-기둥의 자유진동 (Free Vibration of Beam-Columns on Non-Homogeneous Foundation)

  • 이병구;오상진;이태은
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.206-211
    • /
    • 1999
  • The purpose of this study is to investigate the natural frequencies and mode shapes of beam-columns on the non-homogeneous foundaion. The beam model is based on the classical Bernoulli-Euler beam theory. The linear foundation modulus is chosen as the non-homogeneous foundation in this study . The differentidal equation goeverning free vibrations of such beam-columns subjected to axial load is derived and solved numerically for calculting the natural frquencies and mode shapes. In numerical fivekinds of end constraint are considered, and the lowest four natural frquencies and corresponding mode shape are obtained as the non-dimensional forms.

  • PDF

Inelastic stability analysis of high strength rectangular concrete-filled steel tubular slender beam-columns

  • Patel, Vipulkumar Ishavarbhai;Liang, Qing Quan;Hadi, Muhammad N.S.
    • Interaction and multiscale mechanics
    • /
    • 제5권2호
    • /
    • pp.91-104
    • /
    • 2012
  • There is relatively little numerical study on the behavior of eccentrically loaded high strength rectangular concrete-filled steel tubular (CFST) slender beam-columns with large depth-to-thickness ratios, which may undergo local and global buckling. This paper presents a multiscale numerical model for simulating the interaction local and global buckling behavior of high strength thin-walled rectangular CFST slender beam-columns under eccentric loading. The effects of progressive local buckling are taken into account in the mesoscale model based on fiber element formulations. Computational algorithms based on the M$\ddot{u}$ller's method are developed to obtain complete load-deflection responses of CFST slender beam-columns at the macroscale level. Performance indices are proposed to quantify the performance of CFST slender beam-columns. The accuracy of the multiscale numerical model is examined by comparisons of computer solutions with existing experimental results. The numerical model is utilized to investigate the effects of concrete compressive strength, depth-to-thickness ratio, loading eccentricity ratio and column slenderness ratio on the performance indices. The multiscale numerical model is shown to be accurate and efficient for predicting the interaction buckling behavior of high strength thin-walled CFST slender beam-columns.

Ultimate section capacity of steel thin-walled I-section beam-columns

  • Salem, Adel Helmy;Sayed-Ahmed, Ezzeldin Yazeed;El-Serwi, Ahmed Abdelsalam;Korashy, Mohamed Mostafa
    • Steel and Composite Structures
    • /
    • 제4권5호
    • /
    • pp.367-384
    • /
    • 2004
  • A numerical model based on the finite element technique is adopted to investigate the behavior and strength of thin-walled I-section beam-columns. The model considers both the material and geometric nonlinearities. The model results were first verified against some of the currently available experimental results. A parametric study was then performed using the numerical model and interaction diagrams for the investigated beam-columns have been presented. The effects of the web depth-to-thickness ratio, flange outstand-to-thickness ratio and bending moment-to-normal force ratio on the ultimate strength of thin-walled I-section beam-columns were scrutinized. The interaction equations adopted for beam columns design by the NAS (North American Specifications for the design of cold formed steel structural members) have been critically reviewed. An equation for the buckling coefficient which considers the interaction between local buckling of the flange and the web of a thin-walled I-section beam-column has been proposed.

Fundamental behavior of CFT beam-columns under fire loading

  • Varma, Amit H.;Hong, Sangdo;Choe, Lisa
    • Steel and Composite Structures
    • /
    • 제15권6호
    • /
    • pp.679-703
    • /
    • 2013
  • This paper presents experimental investigations of the fundamental behavior of concrete filled steel tube (CFT) beam-columns under fire loading. A total of thirteen specimens were tested to determine the axial force-moment-curvature-temperature behavior of CFT beam-columns. The experimental approach involved the use of: (a) innovative heating and control equipment to apply thermal loading and (b) digital image correlation with close-range photogrammetry to measure the deformations (e.g., curvature) of the heated region. Each specimen was sequentially subjected to: (i) constant axial loading; (ii) thermal loading in the expected plastic hinge region following the ASTM E119 temperature-time T-t curve; and (iii) monotonically increasing flexural loading. The effects of various parameters on the strength and stiffness of CFT beam-columns were evaluated. The parameters considered were the steel tube width, width-tothickness ratio, concrete strength, maximum surface temperature of the steel tube, and the axial load level on the composite CFT section. The experimental results provide knowledge of the fundamental behavior of composite CFT beam-columns, and can be used to calibrate analytical models or macro finite element models developed for predicting behavior of CFT members and frames under fire loading.

기둥과 보-기둥 구조물의 비탄성 좌굴거동 (Inelastic Buckling Behavior of Column and Beam-Column)

  • 이동식;오순택
    • 한국강구조학회 논문집
    • /
    • 제16권2호통권69호
    • /
    • pp.215-224
    • /
    • 2004
  • 에너지법을 이용하여 보-기둥 및 기둥의 비탄성 좌굴거동을 해석하였다. 미국에서 생산되는 I 형강에 적용되는 단순형 잔류응력 모델을 우리나라에서 생산되는 I 형강에 적용하였다. 먼저, 집중 압축 축하중과 균등 휨을 동시에 받는 I 형강에 대하여 비탄성 횡-비틀림 좌굴거동을 알아보고 보-기둥에서의 잔류응력의 영향을 해석하였다. 또한 기둥의 경우에 대하여 해석하였으며 얻어진 결과를 강구조편람에 의한 설계 시의 값과 비교하였다. 결론적으로 강구조편람에 의한 설계는 과설계가 됨을 알 수 있었다.

다층간분리된 직교 적층 보-기둥의 자유진동과 좌굴하중 (Free Vibrations and Buckling Loads of Axially Loaded Cross-Ply Laminated Composite Beam-Columns with Multiple Delaminations)

  • 이성희;김형열;박기태;박대효
    • 한국전산구조공학회논문집
    • /
    • 제15권3호
    • /
    • pp.523-534
    • /
    • 2002
  • 본 논문에서는 축방향 압축하중을 받는 다퐁간분리된 적층 보-기둥의 자유진동과 좌팔에 대한 해석을 수행하였다. 다층간분리된 적층 보-기둥의 고유진동수와 탄성 좌굴 하중에 대한 층간분리의 영향을 조사하기 위해 층간분리의 양단에서 기울기와 곡률이 일정하다는 가정을 적용하여 일반적인 운동학적 연속 조건을 유도하였다. 전체 다층간분리된 보-기둥을 부분으로 분할하고, 연속조건에 따른 반복관계를 각 하부 보-기둥에 부과함으로써 다층간분리된 보-기둥의 특성방정식을 구하였다. 축방향 증분 압축 하중에 따른 다층간분리된 보-기둥의 고유진동수와 탄성 좌굴 하중을 구하였으며 이는 손상되지 않은 적층 보-기둥의 최대 탄성 좌굴 하중에 한정된다 연구를 통하여 층간분리의 크기, 위치, 수가 고유진동수와 특히 탄성 좌굴 하중에 큰 영향을 미치는 것을 알 수 있었다.