• Title/Summary/Keyword: Beam tube

Search Result 451, Processing Time 0.032 seconds

Development of an electron source using carbon nanotube field emittes for a high-brightness X-ray tube (탄소나노튜브를 이용한 고휘도 X-선원용 전자빔원 개발)

  • Kim, Seon-Kyu;Heo, Sung-Hwan;Cho, Sung-Oh
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.252-257
    • /
    • 2005
  • A high-brightness electron beam source for a microfocus X-ray tube has been fabricated using a carbon-nanotube (CNT) field emitter. The electron source consists of cathode that includes a CNT field emitter, a beam-extracting grid, and an anode that accelerates that electron beam. The microfocus X-ray tube requires an electron beam with the diameter of less than 5 $\mu$m and beam current of higher than 30 $\mu$A at the position of the X-ray target. To satisfy the requirements, the geometries of the field emitter tips and the electrodes of the gun was optimized by calculating the electron trajectories and beam spatial profile with EGUN code. The CNT tips were fabricated with successive steps: a tungsten wire with the diameter of 200 $\mu$m was chemically etched and was subsequently coated with CNTs by chemical vapor deposition. The experiments of electron emission at the fabricated CNT tips were performed. The design characteristics and basic experimental results of the electron source are reported.

Absorbing Rate of Solar Irradiation on Glass Evacuated Tube Collectors Depending on the Absorbing Tube Shape (진공관형 태양열 집열기의 집열관 형상에 따른 태양 복사 에너지 흡수량의 변화)

  • Seo, Tae-Beom;Kang, Hee-Dong;Kim, Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.1
    • /
    • pp.35-44
    • /
    • 2005
  • The absorbing rate of solar irradiation on the surface of an absorbing tube in a glass evacuated solar collector is numerically investigated. Four different shapes of the absorbing tubes are considered, and the absorbed solar irradiation on the surface is calculated for several distances between the absorbing tubes and the incidence angle of solar beam radiation. From the calculation, it is known that the absorbing rate of solar irradiation on the tube surfaces depends upon the shape and the arrangement of absorbing tube and the incidence angle.

The effect of RBS connection on energy absorption in tall buildings with braced tube frame system

  • Shariati, Mahdi;Ghorbani, Mostafa;Naghipour, Morteza;Alinejad, Nasrollah;Toghroli, Ali
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.393-407
    • /
    • 2020
  • The braced tube frame system, a combination of perimeter frame and bracing frame, is one of the systems used in tall buildings. Due to the implementation of this system in tall buildings and the high rigidity resulting from the use of general bracing, providing proper ductility while maintaining the strength of the structure when exposing to lateral forces is essential. Also, the high stress at the connection of the beam to the column may cause a sudden failure in the region before reaching the required ductility. The use of Reduced Beam Section connection (RBS connection) by focusing stress in a region away from beam to column connection is a suitable solution to the problem. Because of the fact that RBS connections are usually used in moment frames and not tested in tall buildings with braced tube frames, they should be investigated. Therefore, in this research, three tall buildings in height ranges of 20, 25 and 30 floors were modeled and designed by SAP2000 software, and then a frame in each building was modeled in PERFORM-3D software under two RBS-free system and RBS-based system. Nonlinear time history dynamic analysis is used for each frame under Manjil, Tabas and Northridge excitations. The results of the Comparison between RBS-free and RBS-based systems show that the RBS connections increased the absorbed energy level by reducing the stiffness and increasing the ductility in the beams and structural system. Also, by increasing the involvement of the beams in absorbing energy, the columns and braces absorb less energy.

A Study on Pulsed Nd:YAG Laser Welding of Electron Gun in Braun Tubes (I) - Characteristics of Beam Output Energy and Optical Parameters - (브라운관 전자총 부품의 펄스 Nd:YAG레이저 용접에 관한 연구 (I) - 빔의 출력특성과 광학변수 -)

  • 김종도;하승협;조상명
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.525-534
    • /
    • 2002
  • During laser spot welding of the braun tube electron gun, phenomena such as serious spattering and oxidative reaction, etc. were occurred. The spatter occurred from weld pool affects the braun tube, namely it blocks up a very small hole on the shadow mask and causes short circuit between two roles of the electron gun. We guessed that high power density and oxidative reaction are main sources of these problems. So, we studied to prevent and to reduce spatter occurring in spot welding of the braun tube electron gun using pulsed Nd:YAG laser. The characteristics of laser output power was estimated, and the loss of laser energy by optical parameter and spatter was measured by powermeter. The effects of welding parameters, laser defocused distance and incident angle, were investigated on the shape and penetration depth of the laser welded bead in flare and flange joints. From these results, the laser peak power was a major factor to control penetration depth and to occur spatter. It was found that the losses of laser energy by optic parameter and sticked spatter affect seriously laser weldability of thin sheets. The deepest penetration depth is gotten on focal position, and a "bead transition" occurred with a slight displacement of focal position relative to the workpiece surface and the absorption rate of the laser energy is affected by the shape factor of the workpiece. When we changed the incident angle of laser beam, the penetration depth was decreased a little with increasing of the incident angle, and the bead width was increased. The spattering was prevented by considering laser beam energy and incident angle.ent angle.

Seismic behaviors of ring beams joints of steel tube-reinforced concrete column structure

  • Zhang, Yingying;Pei, Jianing;Huang, Yuan;Lei, Ke;Song, Jie;Zhang, Qilin
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.417-426
    • /
    • 2018
  • This paper presents the seismic behaviors and restoring force model of ring beam joints of steel tube-reinforced concrete column structure under cyclic loading. First, the main failure mode, ultimate bearing capacity, stiffness degradation and energy dissipation capacity are studied. Then, the effects of concrete grade, steel grade, reinforcement ratio and radius-to-width ratios are discussed. Finally, the restoring force model is proposed. Results show that the ring beam joints of steel tube-reinforced concrete column structure performs good seismic performances. With concrete grade increasing, the ultimate bearing capacity and energy dissipation capacity increase, while the stiffness degradation rates increases slightly. When the radius-width ratio is 2, with reinforcement ratio increasing, the ultimate bearing capacity decreases. However, when the radius-to-width ratios are 3, with reinforcement ratio increasing, the ultimate bearing capacity increases. With radius-to-width ratios increasing, the ultimate bearing capacity decreases slightly and the stiffness degradation rate increases, but the energy dissipation capacity increases slightly.

Design and Analysis of Section-divided Circular Composite Wing Spar (단면분할 원통형 복합재료 날개 보 설계 및 해석)

  • Kim, Ki-Hoon;Koo, Kyo-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.687-694
    • /
    • 2019
  • A circular composite spar in the wing of ultra-light aircraft is subjected to both bending moment and transverse shear loads. However, the beam being used in the aircraft may be inefficient because the design would not take into account the characteristics of the circular tube that supports the bending moment in top and bottom arc parts and the transverse load in left and right ones. Therefore, it is necessary to efficiently fabricate the circular tube beam by properly selecting the stacking sequences or the laminated composite structure. In order to increase both bending and transverse shear strengths of the beams, in this study, a cross-section of circular tube is divided into four arcs: top, bottom, left and right ones. The commercial program, MSC/NASTRAN is used to calculate vertical displacement and the normal and shear strains with variation of parameters such as division angle of arc and fiber orientation. Based on the results, the effective parameters for the new circular composite beam are presented to increase its bending and shear strengths.

Derivation of the Effective Energy Calculation Formula of the X-ray Beam Generated by the CT Simulator (CT 모의치료장치에서 발생된 X-선 빔의 유효에너지 계산식 유도)

  • Kim, Jong-Eon;Lee, Sang-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.869-875
    • /
    • 2021
  • The purpose of this study is to derive a formula for calculating the effective energy of an X-ray beam generated by a CT simulator. Under 90, 120, and 140 kVp X-ray beams, the CT number calibration insert part of the AAPM CT performance phantom was scanned 5 times with a CT simulator. The CT numbers of polyethylene, polystyrene, water, nylon, polycarbonate, and acrylic were measured for each CT slice image. The average value of CT number measured under a single tube voltage and the linear attenuation coefficients corresponding to each photon energy calculated from the data of the National Institute of Standards and Technology were linearly fitted. Among the obtained correlation coefficients, the photon energy having the maximum value was determined as the effective energy. In this way, the effective energy of the X-ray beam generated at each tube voltage was determined. By linearly fitting the determined effective energies(y) and tube voltages(x), y=0.33026x+30.80263 as an effective energy calculation formula was induced.

Optimization of exposure parameters and relationship between subjective and technical image quality in cone-beam computed tomography

  • Park, Ha-Na;Min, Chang-Ki;Kim, Kyoung-A;Koh, Kwang-Joon
    • Imaging Science in Dentistry
    • /
    • v.49 no.2
    • /
    • pp.139-151
    • /
    • 2019
  • Purpose: This study was performed to investigate the effect of exposure parameters on image quality obtained using a cone-beam computed tomography (CBCT) scanner and the relationship between physical factors and clinical image quality depending on the diagnostic task. Materials and Methods: CBCT images of a SedentexCT IQ phantom and a real skull phantom were obtained under different combinations of tube voltage and tube current (Alphard 3030 CBCT scanner, 78-90 kVp and 2-8 mA). The images obtained using a SedentexCT IQ phantom were analyzed technically, and the physical factors of image noise, contrast resolution, spatial resolution, and metal artifacts were measured. The images obtained using a real skull phantom were evaluated for each diagnostic task by 6 oral and maxillofacial radiologists, and each setting was classified as acceptable or unacceptable based on those evaluations. A statistical analysis of the relationships of exposure parameters and physical factors with observer scores was conducted. Results: For periapical diagnosis and implant planning, the tube current of the acceptable images was significantly higher than that of the unacceptable images. Image noise, the contrast-to-noise ratio (CNR), the line pair chart on the Z axis, and modulation transfer function (MTF) values showed statistically significant differences between the acceptable and unacceptable image groups. The cut-off values obtained using receiver operating characteristic curves for CNR and MTF 10 were useful for determining acceptability. Conclusion: Tube current had a major influence on clinical image quality. CNR and MTF 10 were useful physical factors that showed significantly associations with clinical image quality.

A Study on image noise removal of $2^{nd}$ electron detector for a E-Beam Lithography (전자빔 가공기를 위한 2 차 전자 검출기의 영상 노이즈 제거에 관한 연구)

  • Im Y.B.;Moon H.M.;Joe H.T.;Paek Y.J.;Lee C.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1741-1744
    • /
    • 2005
  • The electron beam machining provides very high resolution up to nanometer scale, hence the E-Beam writing technology is rapidly growing in MEMS and nano-engineering areas. For E-Beam machining, $2^{nd}$ electron detector is required to see a machined sample at the stage. The $2^{nd}$ electron detector is composed of scintillator and photomultiplier with signal amplifier and high voltage power supplier. Since a photomultiplier tube is an extremely high-sensitivity photodetector, the signal light level to be detected is very low and therefore particular care must be exercised in shielding external light. In this paper, the design methodology of $2^{nd}$ electron detector and the image noise removal method are introduced.

  • PDF

A study of Physically Implanted Surface Islands by direct Nd:YAG Laser Beam Irradiation

  • Oh, Chang-Heon;Cheon, Suyoung;Lim, Changjin;Lee, Jeongjun;Jeon, Jihyun;Kim, Kyoung-Kook;Chung, Chan-Moon;Cho, Soohaeng
    • Applied Science and Convergence Technology
    • /
    • v.26 no.4
    • /
    • pp.66-69
    • /
    • 2017
  • Physically implanted surface islands of Nano Carbon Tube (NCT) and ${\alpha}-F_2O_3$ particles have been produced on Al-doped ZnO (AZO)/glass surfaces by simple and direct ND:YAG laser beam irradiation. Sheet resistance of the reconstructed surface increased by about 3.6% of over AZO. Minimal surface damage can be repaired by ND:YAG laser beam irradiation in conjunction with proper impurities. Implanted islands of NCT, which are considered to be a good conductive impurity, on AZO increased the sheet resistance by about 1.8%, while implanted islands of ${\alpha}-F_2O_3$, an insulating impurity, on AZO increased sheet resistance by about 129% compared with a laser beam treated AZO. This study provides insight regarding surface implantations of nanowires and micro-circuits, doping effects for semiconductors and optical devices, surface area and impurity effects for catalysis.