• 제목/요약/키워드: Beam length

검색결과 1,527건 처리시간 0.029초

Analysis of RC beam with unbonded or exposed tensile steel reinforcements and defective stirrup anchorages for shear strength

  • Wang, Xiao-Hui;Liu, Xi-La
    • Computers and Concrete
    • /
    • 제10권1호
    • /
    • pp.59-78
    • /
    • 2012
  • Although the effect of corrosion of reinforcing bar on the shear behavior of the reinforced concrete (RC) beam had been simulated by tests of the beam with unbonded, half-exposed or whole-exposed tensile steel reinforcements as well as defective stirrup anchorages, theoretical methods to accurately predict remaining capacity of this kind of RC beams, especially shear capacity, are still lacking. Considering the possible position of the critical inclined crack, the actual pattern of strains in the concrete body within the partial length and the proposed compatibility condition of deformations of the RC beam, shear strength of the RC beam with unbonded or exposed tensile steel reinforcements and/or defective stirrup anchorages is predicted. Comparison between the model's predictions with the experimental results published in the literature shows the practicability of the proposed model. Influence of the length of unbonded or exposed tensile steel reinforcements and the percentage of stirrups lacked end anchorages on the shear strength of the RC beam is discussed. It is concluded that, the shear strength of the RC beam with unbonded or exposed tensile steel reinforcements and/or defective stirrup anchorages is greatly influenced by the length of unbonded or exposed tensile steel reinforcements and the percentage of stirrups lacked end anchorages, this influence can be adverse, insignificant or even favourable, dependent on the given parameters of the corresponding normal bonded RC beam.

Intelligent computer modelling and simulation for the large amplitude of nano systems

  • Yi, Wenjuan
    • Advances in nano research
    • /
    • 제13권1호
    • /
    • pp.63-75
    • /
    • 2022
  • The nonlinear dynamic behavior of a nonuniform small-scale nonlocal beam is investigated in this work. The nanobeam is theoretically modeled using the nonlocal Eringen theory, as well as a few of Von-nonlinear Kármán's theories and the classical beam theory. The Hamilton principle extracts partial differential equations (PDE) of an axially functionally graded (AFG) nano-scale beam consisting of SUS304 and Si3N4 throughout its length, and an elastic Winkler-Pasternak substrate supports the tapered AFG nanobeam. The beam thickness is a function of beam length, and it constantly varies throughout the length of the beam. The numerical solution strategy employs an iteration methodology connected with the generalized differential quadratic method (GDQM) to calculate the nonlinear outcomes. The nonlinear numerical results are presented in detail to examine the impact of various parameters such as nonlinear amplitude, nonlocal parameter, the component of the elastic foundation, rate of cross-section change, and volume fraction parameter on the linear and nonlinear free vibration characteristics of AFG nanobeam.

조합하중을 받는 변단면 변화곡선 보의 기하 비선형 수치해석 (Geometrical Non-linear Analyses of Tapered Variable-Arc-Length Beam subjected to Combined Load)

  • 이병구;오상진;이태은
    • 한국전산구조공학회논문집
    • /
    • 제25권2호
    • /
    • pp.129-138
    • /
    • 2012
  • 이 연구는 조합하중을 받는 변단면 변화곡선 보의 기하 비선형 수치해석 방법에 관한 연구이다. 보의 좌단은 회전지점이고 우단은 마찰이 없는 활동(滑動)지점으로 지지되어 있어 하중이 작용하면 보의 축방향 길이가 증가하여 평형상태를 이룬다. 조합하중은 회전지점에 작용하는 모멘트 하중과 집중하중을 고려하였다. 보의 단면은 휨 강성이 부재축을 따라 함수적으로 변화하는 변단면으로 선택하였다. 이러한 보의 비선형 거동을 지배하는 연립 미분방정식을 Bernoulli-Euler 보 이론으로 유도하였다. 이 미분방정식을 반복법으로 수치해석하여 보의 정확탄성곡선을 산정하였다. 이 연구의 이론을 검증하기 위하여 실험실 규모의 실험을 실행하였다.

Investigation of two parallel lengthwise cracks in an inhomogeneous beam of varying thickness

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • 제9권4호
    • /
    • pp.381-396
    • /
    • 2020
  • Analytical investigation of the fracture of inhomogeneous beam with two parallel lengthwise cracks is performed. The thickness of the beam varies continuously along the beam length. The beam is loaded in three-point bending. Two beam configurations with different lengths of the cracks are analyzed. The two cracks are located arbitrary along the thickness of the beam. Solutions to the strain energy release rate are derived assuming that the material has non-linear elastic mechanical behavior. Besides, the beam exhibits continuous material inhomogeneity along its thickness. The balance of the energy is analyzed in order to derive the strain energy release rate. Verifications of the solutions are carried-out by considering the complementary strain energy stored in the beam configurations. The influence of the continuous variation of the thickness along the beam length on the lengthwise fracture behavior is investigated. The dependence of the lengthwise fracture on the lengths of the two parallel cracks is also studied.

Study on the progressive collapse resistance of CP-FBSP connections in L-CFST frame structure

  • Xiong, Qingqing;Wu, Wenbo;Zhang, Wang;Chen, Zhihua;Liu, Hongbo;Su, Tiancheng
    • Steel and Composite Structures
    • /
    • 제44권3호
    • /
    • pp.437-450
    • /
    • 2022
  • When the vertical load-bearing members in high-rise structures fail locally, the beam-column joints play an important role in the redistribution of the internal forces. In this paper, a static laboratory test of three full-scale flush flange beam-reinforced connections with side and cover plates (CP-FBSP connection) with double half-span steel beams and single L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) was conducted. The influence of the side plate width and cover plate thickness on the progressive collapse resistance of the substructure was thoroughly analyzed. The failure mode, vertical force-displacement curves, strain variation, reaction force of the pin support and development of internal force in the section with the assumed plastic hinge were discussed. Then, through the verified finite element model, the corresponding analyses of the thickness and length of the side plates, the connecting length between the steel beam flange and cover plate, and the vertical-force eccentricity were carried out. The results show that the failure of all the specimens occurred through the cracking of the beam flange or the cover plate, and the beam chord rotations measured by the test were all greater than 0.085 rad. Increasing the length, thickness and width of the side plates slightly reduced the progressive collapse resistance of the substructures. The vertical-force eccentricity along the beam length reduced the progressive collapse resistance of the substructure. An increase in the connecting length between the beam flange and cover plate can significantly improve the progressive collapse resistance of substructures.

Optimum shape and length of laterally loaded piles

  • Fenu, Luigi;Briseghella, Bruno;Marano, Giuseppe Carlo
    • Structural Engineering and Mechanics
    • /
    • 제68권1호
    • /
    • pp.121-130
    • /
    • 2018
  • This study deals with optimum geometry design of laterally loaded piles in a Winkler's medium through the Fully Stressed Design (FSD) method. A numerical algorithm distributing the mass by means of the FSD method and updating the moment by finite elements is implemented. The FSD method is implemented here using a simple procedure to optimise the beam length using an approach based on the calculus of variations. For this aim two conditions are imposed, one transversality condition at the bottom end, and a one sided constraint for moment and mass distribution in the lower part of the beam. With this approach we derive a simple condition to optimise the beam length. Some examples referred to different fields are reported. In particular, the case of laterally loaded piles in Geotechnics is faced.

BIM 기반 형상코드를 이용한 보 철근길이 자동 산장 기초 연구 (A Basic Study of Automatic Estimation Algorithm on the Rebar Length of Beam by Using BIM-Based Shape Codes Built in Revit)

  • 다니엘;김선국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.167-168
    • /
    • 2023
  • Construction of reinforced concrete structures required massive amounts of concrete and steel rebar. The current procedure to estimate the quantity of rebar requires tedious and time-consuming manual labor. Consequently, this circumstance made the engineers vulnerable to error and mistake, which led to the rebar waste. No system that is capable of automatically calculating rebar length has yet been developed Thus, this study proposes a preliminary investigation of automatic rebar length estimation of beam element by using BIM-based shape codes drawn in Revit. Beam is chosen due to its complexity in the rebar arrangement. In addition, the development of this study could assist engineers on the construction site and effectively contribute to the minimization of rebar waste in the future.

  • PDF

Cyclic testing of steel column-tree moment connections with various beam splice lengths

  • Lee, Kangmin;Li, Rui;Chen, Liuyi;Oh, Keunyeong;Kim, Kang-Seok
    • Steel and Composite Structures
    • /
    • 제16권2호
    • /
    • pp.221-231
    • /
    • 2014
  • The purpose of this study was to evaluate the cyclic behavior of steel column-tree moment connections used in steel moment resisting frames. These connections are composed of shop-welded stub beam-to-column connection and field bolted beam-to-beam splice. In this study, the effects of beam splice length on the seismic performance of column-tree connections were experimentally investigated. The change of the beam splice location alters the bending moment and shear force at the splice, and this may affect the seismic performance of column-tree connections. Three full-scale test specimens of column-tree connections with the splice lengths of 900 mm, 1,100 mm, and 1,300 mm were fabricated and tested. The splice lengths were roughly 1/6, 1/7, 1/8 of the beam span length of 7,500 mm, respectively. The test results showed that all the specimens successfully developed ductile behavior without brittle fracture until 5% radians story drift angle. The maximum moment resisting capacity of the specimens showed little differences. The specimen with the splice length of 1,300 mm showed better bolt slip resistance than the other specimens due to the smallest bending moment at the beam splice.

Lateral-torsional buckling of functionally graded tapered I-beams considering lateral bracing

  • Rezaiee-Pajand, Mohammad;Masoodi, Amir R.;Alepaighambar, Ali
    • Steel and Composite Structures
    • /
    • 제28권4호
    • /
    • pp.403-414
    • /
    • 2018
  • In this paper, the lateral-torsional buckling of axially-transversally functionally graded tapered beam is investigated. The structure cross-section is assumed to be symmetric I-section, and it is continuously laterally supported by torsional springs through the length. In addition, the height of cross-section varies linearly throughout the length of structure. The proposed formulation is obtained for the case that the elastic and shear modulus change as a power function along the beam length and section height. This structure carries two concentrated moments at the ends. In this study, the lateral displacement and twisting angle relation of the beam are defined by sinusoidal series. After establishing the eigenvalue equation of unknown constants, the beam critical bending moment is found. To validate the accuracy and correctness of results, several numerical examples are solved.

U-노치 및 균열을 갖는 보의 응력집중계수 및 응력확대계수 (Stress Concentration Factor and Stress Intensity Factor with U-notch and Crack in the Beam)

  • 서보성;이광호
    • 대한기계학회논문집A
    • /
    • 제40권5호
    • /
    • pp.513-523
    • /
    • 2016
  • 단순보와 외팔보의 U-노치 및 균열에 대한 응력집중계수 및 응력확대계수를 유한요소법 및 광탄성실험에 의해 해석하였다. 해석결과를 사용하여 응력집중계수 및 응력확대계수의 추정 그래프를 얻었다. 노치의 응력집중계수해석을 위하여 무차원 노치 길이 H(시편의 높이)/h=1.1~2, 무차원 틈 간격 r(노치선단의 반경)/h=0.1~0.5로 하였다. 여기서 h=H-c, c=노치길이이다. 해석결과 틈 길이가 증가할수록 그리고 틈 간격이 좁아질수록 응력집중계수는 증가 한다. 응력집중계수는 단순보가 외팔보다 더 크게 나타나나, 실제 일정한 하중과 노치길이 및 틈 간격 하에서 최대 응력값은 단순보보다 외팔보에서 크게 발생함을 알 수 있었다. 균열해석을 위하여 무차원 균열길이 a(균열길이)/H=0.2~0.5로 하였다. 균열의 길이가 증가 할수록 무차원 응력확대계수는 증가한다. 일정한 하중과 일정한 균열길이하에 응력확대계수값은 단순보 보다 외팔보에서 크게 발생함을 알 수 있었다.