• Title/Summary/Keyword: Beam equation

Search Result 1,037, Processing Time 0.026 seconds

The exact solutions for the natural frequencies and mode shapes of non-uniform beams carrying multiple various concentrated elements

  • Chen, Der-Wei
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.153-176
    • /
    • 2003
  • From the equation of motion of a "bare" non-uniform beam (without any concentrated elements), an eigenfunction in term of four unknown integration constants can be obtained. When the last eigenfunction is substituted into the three compatible equations, one force-equilibrium equation, one governing equation for each attaching point of the concentrated element, and the boundary equations for the two ends of the beam, a matrix equation of the form [B]{C} = {0} is obtained. The solution of |B| = 0 (where ${\mid}{\cdot}{\mid}$ denotes a determinant) will give the "exact" natural frequencies of the "constrained" beam (carrying any number of point masses or/and concentrated springs) and the substitution of each corresponding values of {C} into the associated eigenfunction for each attaching point will determine the corresponding mode shapes. Since the order of [B] is 4n + 4, where n is the total number of point masses and concentrated springs, the "explicit" mathematical expression for the existing approach becomes lengthily intractable if n > 2. The "numerical assembly method"(NAM) introduced in this paper aims at improving the last drawback of the existing approach. The "exact"solutions in this paper refer to the numerical results obtained from the "continuum" models for the classical analytical approaches rather than from the "discretized" ones for the conventional finite element methods.

Physics based basis function for vibration analysis of high speed rotating beams

  • Ganesh, R.;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.39 no.1
    • /
    • pp.21-46
    • /
    • 2011
  • The natural frequencies of continuous systems depend on the governing partial differential equation and can be numerically estimated using the finite element method. The accuracy and convergence of the finite element method depends on the choice of basis functions. A basis function will generally perform better if it is closely linked to the problem physics. The stiffness matrix is the same for either static or dynamic loading, hence the basis function can be chosen such that it satisfies the static part of the governing differential equation. However, in the case of a rotating beam, an exact closed form solution for the static part of the governing differential equation is not known. In this paper, we try to find an approximate solution for the static part of the governing differential equation for an uniform rotating beam. The error resulting from the approximation is minimized to generate relations between the constants assumed in the solution. This new function is used as a basis function which gives rise to shape functions which depend on position of the element in the beam, material, geometric properties and rotational speed of the beam. The results of finite element analysis with the new basis functions are verified with published literature for uniform and tapered rotating beams under different boundary conditions. Numerical results clearly show the advantage of the current approach at high rotation speeds with a reduction of 10 to 33% in the degrees of freedom required for convergence of the first five modes to four decimal places for an uniform rotating cantilever beam.

An alternative evaluation of the LTB behavior of mono-symmetric beam-columns

  • Yilmaz, Tolga;Kirac, Nevzat;Anil, O zgur
    • Steel and Composite Structures
    • /
    • v.30 no.5
    • /
    • pp.471-481
    • /
    • 2019
  • Beam-columns are structural members subjected to a combination of axial and bending forces. Lateral-torsional buckling is one of the main failure modes. Beam-columns that are bent about its strong axis may buckle out of the plane by deflecting laterally and twisting as the values of the applied loads reach a limiting state. Lateral-torsional buckling failure occurs suddenly in beam-column elements with a much greater in-plane bending stiffness than torsional or lateral bending stiffness. This study intends to establish a unique convenient closed-form equation that it can be used for calculating critical elastic lateral-torsional buckling load of beam-column in the presence of a known axial load. The presented equation includes first order bending distribution, the position of the loads acting transversely on the beam-column and mono-symmetry property of the section. Effects of axial loads, slenderness and load positions on lateral torsional buckling behavior of beam-columns are investigated. The proposed solutions are compared to finite element simulations where thin-walled shell elements including warping are used. Good agreement between the analytical and the numerical solutions is demonstrated. It is found out that the lateral-torsional buckling load of beam-columns with mono-symmetric sections can be determined by the presented equation and can be safely used in design procedures.

Differential transform method for free vibration analysis of a moving beam

  • Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.645-658
    • /
    • 2010
  • In this study, the Differential Transform Method (DTM) is employed in order to solve the governing differential equation of a moving Bernoulli-Euler beam with axial force effect and investigate its free flexural vibration characteristics. The free vibration analysis of a moving Bernoulli-Euler beam using DTM has not been investigated by any of the studies in open literature so far. At first, the terms are found directly from the analytical solution of the differential equation that describes the deformations of the cross-section according to Bernoulli-Euler beam theory. After the analytical solution, an efficient and easy mathematical technique called DTM is used to solve the differential equation of the motion. The calculated natural frequencies of the moving beams with various combinations of boundary conditions using DTM are tabulated in several tables and are compared with the results of the analytical solution where a very good agreement is observed.

Seismic resistance and mechanical behaviour of exterior beam-column joints with crossed inclined bars

  • Bakir, P.G.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.4
    • /
    • pp.493-517
    • /
    • 2003
  • Attempts at improving beam-column joint performance has resulted in non-conventional ways of reinforcement such as the use of the crossed inclined bars in the joint area. Despite the wide accumulation of test data, the influence of the crossed inclined bars on the shear strength of the cyclically loaded exterior beam-column joints has not yet been quantified and incorporated into code recommendations. In this study, the investigation of joints has been pursued on two different fronts. In the first approach, the parameters that influence the behaviour of the cyclically loaded beam-column joints are investigated. Several parametric studies are carried out to explore the shear resisting mechanisms of cyclically loaded beam-column joints using an experimental database consisting of a large number of joint tests. In the second approach, the mechanical behaviour of joints is investigated and the equations for the principal tensile strain and the average shear stress are derived from joint mechanics. It is apparent that the predictions of these two approaches agree well with each other. A design equation that predicts the shear strength of the cyclically loaded exterior beam-column joints is proposed. The design equation proposed has three major differences from the previously suggested design equations. First, the influence of the bond conditions on the joint shear strength is considered. Second, the equation takes the influence of the shear transfer mechanisms of the crossed inclined bars into account and, third, the equation is applicable on joints with high concrete cylinder strength. The proposed equation is compared with the predictions of the other design equations. It is apparent that the proposed design equation predicts the joint shear strength accurately and is an improvement on the existing code recommendations.

Proposition of a Predicting Equation for Shear Capacity of HSC Beam (단면의 모멘트를 이용한 고강도 콘크리트 보의 전단강도 예측식의 제안)

  • Choi Jeong Seon;Lee Chang Hoon;Lee Joo Ha;Yoon Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.375-378
    • /
    • 2005
  • In the mechanism of beam shear failure, beam action and arch action always exist simultaneously. According to a/d ratio, the proportion and contribution between these two actions to shear capacity are merely changed. Moreover, the current codes recommendations are founded on the experimental results with normal strength concrete, the applicable range of $f'_{c}$ must be extended. Based on this mechanism and new requirement, an analytical equation is proposed for shear capacity prediction of reinforced concrete beams without stirrups. To reflect contribution change of two actions, stress variation in longitudinal reinforcement along the span is considered with Jenq and Shah Model. Dowel action and shear friction are also taken into account. Size effect is included to derive more precise equation. It is shown that the proposed equation is more accurate than other empirical equations and codes. So, it can be possible that wide range of a/d ratio is considered by one equation.

  • PDF

Influence of Tip Mass and Moving Mass on Dynamic Behavior of Beam with Double-Crack (이중크랙을 가진 보의 동특성에 미치는 끝단질량과 이동질량의 영향)

  • Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.713-716
    • /
    • 2004
  • In this paper a dynamic behavior of a double-cracked cnatilver beam with a tip mass and the moving mass is presented. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by using Lagrange's equation. The influences of the moving mass, a tip mass and double cracks have been studied on the dynamic behavior of a cantilever beam system by numerical method. The cracks section are represented by the local flexibility matrix connecting two undamaged beam segments. ,Therefore, the cracks are modelled as a rotational spring. Totally, as a tip mass is increased, the natural frequency of cantilever beam is decreased. The position of the crack is located in front of the cantilever beam, the frequencies of a double-cracked cantilever beam presents minimum frequency.

  • PDF

Free Vibration of Radially Multi-Delaminated Beams (방사형 다층간분리된 보의 자유진동)

  • 이성희;마석오;한병기;박대효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.25-32
    • /
    • 2002
  • Free vibration analysis of radialiy multi-delaminated beams with through-the-width multi-delamination is performed in the present study. The multiple delaminations are considered to be in a radial manner through the thickness from the top surface of the beam. The natural frequencies of the radially multi-delaminated beams are calculated from a new algorithm that is based on the single compound delaminated beam model. That is, beams with radial multi-delaminations are regarded as the sum of a single compound delamlnated beam that is the single sub-delaminated beam from the top surface of global beam. Each result of frequency equation for the single delaminated beam with unknown boundary conditions obtained through continuity conditions Is updated to the next one, With these sequential operations, the final frequency equation of radially multi-delaminated beams is obtained for both ends boundary conditions of global beam. The numerical results carried out for the beams are compared with those of some references to give the reliance on the proposed algorithm and to investigate the effects of the shape, number, size of multi-delaminations on the natural frequency. Compared with the other previously presented model, the proposed algorithm is more flexible in modeling and formulating as the total array size of frequency equation is always four by four. Therefore, the proposed algorithm will reduce the effort of user in formulating the physical model to the numerical model.

  • PDF

Dynamic Behavior of Timoshenko Beam with Crack and Moving Mass (크랙과 이동질량이 존재하는 티모센코 보의 동특성)

  • Yoon Han Ik;Choi Chang Soo;Son In Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.143-151
    • /
    • 2005
  • This paper study the effect of open cracks on the dynamic behavior of simply supported Timoshenko beam with a moving mass. The influences of the depth and the position of the crack in the beam have been studied on the dynamic behavior of the simply supported beam system by numerical method. Using Lagrange's equation derives the equation of motion. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modeled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces on the crack section and is derived by the applying fundamental fracture mechanics theory. As the depth of the crack is increased the mid-span deflection of the Timoshenko beam with the moving mass is increased. And the effects of depth and position of crack on dynamic behavior of simply supported beam with moving mass are discussed.

Stability Analysis of Cracked Cantilever Beam Subjected to Follower Force (종동력을 받는 크랙 외팔 보의 안정성 해석)

  • Ahn, Sung-Jin;Yoon, Han-Ik;Son, In-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.215-218
    • /
    • 2007
  • In this paper a dynamic behavior(natural frequency) of a cracked cantilever beam subjected to follower force is presented. In addition, an analysis of the flutter and buckling instability of a cracked cantilever beam subjected to a follower compressive load is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The vibration analysis on such cracked beam is conducted to identify the critical follower force for flutter insstability based on the variation of the first two resonant frequencies of the beam. Besides, the effect of the crack's intensity and location on the flutter follower force is studied. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations.

  • PDF