• Title/Summary/Keyword: Beam equation

Search Result 1,045, Processing Time 0.035 seconds

Effects of Slenderness ratio on Dynamic Behavior of Cantilever Beam Subjected to Follower Force (종동력을 받는 외팔보의 진동특성에 미치는 세장비의 영향)

  • Son, In-Soo;Yoon, Han-Ik;Ahn, Tae-Su
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.575-578
    • /
    • 2008
  • In this paper, the purpose is to investigate the stability and variation of natural frequency of a Timoshenko cantilever beam subjected to follower force and tip mass. In addition, an analysis of the flutter instability(flutter critical follower force) of a cantilever beam as slenderness ratio is investigated. The governing differential equations of a Timoshenko beam subjected to an end tangential follower force is derived via Hamilton;s principle. The two coupled governing differential equations are reduced to one fourth order ordinary differential equation in terms of the flexural displacement. Finally, the influence of the slenderness ratio and tip mass on the critical follower force and the natural frequency of a Timoshenko beam are investigated.

  • PDF

Response determination of a viscoelastic Timoshenko beam subjected to moving load using analytical and numerical methods

  • Tehrani, Mohammad;Eipakchi, H.R.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • In this paper the dynamic behavior of a viscoelastic Timoshenko beam subjected to a concentrated moving load are studied analytically and numerically. The viscoelastic properties of the beam obey the linear standard model in shear and incompressible in bulk. The governing equation for Timoshenko beam theory is obtained in viscoelastic form using the correspondence principle. The analytical solution is based on the Fourier series and the numerical solution is performed with finite element method. The effects of the material properties and the load velocity are investigated on the responses by numerical and analytical methods. In addition, the results are compared with the Euler beam results.

Propagation Properties of a Partially Coherent Flat-Topped Vortex Hollow Beam in Turbulent Atmosphere

  • Liu, Dajun;Wang, Yaochuan;Wang, Guiqiu;Yin, Hongming
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Using coherence theory, the partially coherent flat-topped vortex hollow beam is introduced. The analytical equation for propagation of a partially coherent flat-topped vortex hollow beam in turbulent atmosphere is derived, using the extended Huygens-Fresnel diffraction integral formula. The influence of coherence length, beam order N, topological charge M, and structure constant of the turbulent atmosphere on the average intensity of this beam propagating in turbulent atmosphere are analyzed using numerical examples.

Motion Analysis of a Translating Flexible Beam Carrying a Moving Mass

  • Park, Sangdeok;Youngil Youm
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.30-39
    • /
    • 2001
  • This paper investigates vibrational motion of a flexible beam fixed on a moving cart and carrying a moving mass. The equations of motion of the beam-mass-cart system are analysed through the unconstrained modal analysis. The exact normal mode solution used in modal analysis correspond to the eigenfrequencies for each position of the moving mass and to the ratios of the weight of the beam-mass-car system. Time solutions of normal modes are also transformed properly according to the position of the moving mass. Numerical simulations are carried out to obtain open-loop responses of the system in tracking pre-designed paths of the moving mass. The simulation results show that the model predicts the dynamic behavior of the beam-mass-cart system well. Experiments are carried out to show the validity of the proposed analytical method.

  • PDF

Influence of Partial Elastic Foundations on Dynamic Stability of a Cantilevered Timoshenko Beam with a Tip Mass under a follower force (끝단 질량을 갖고 종동력을 받는 외팔 Timoshenko 보의 동적안정성에 미치는 부분 탄성기초의 영향)

  • Shin, Kwang-Bok;Kim, Hyo-Jun;Ryu, Bong-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.65-71
    • /
    • 2005
  • This paper presents the dynamic stability of a cantilevered Timoshenko beam on partial elastic foundations subjected to a follower force. The beam with a tip concentrated mass is assumed to be a Timoshenko beam taking into account its rotary inertia and shear deformation. Governing equations are derived by extended Hamilton's principle, and finite element method is applied to solve the discretized equation. Critical follower force depending on the attachment ratios of partial elastic foundations, rotary inertia of the beam and magnitude and rotary inertia of the tip mass is fully investigated.

An Efficient and Accurate Method for Calculating Nonlinear Diffraction Beam Fields

  • Jeong, Hyunjo;Cho, Sungjong;Nam, Kiwoong;Lee, Janghyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.2
    • /
    • pp.102-111
    • /
    • 2016
  • This study develops an efficient and accurate method for calculating nonlinear diffraction beam fields propagating in fluids or solids. The Westervelt equation and quasilinear theory, from which the integral solutions for the fundamental and second harmonics can be obtained, are first considered. A computationally efficient method is then developed using a multi-Gaussian beam (MGB) model that easily separates the diffraction effects from the plane wave solution. The MGB models provide accurate beam fields when compared with the integral solutions for a number of transmitter-receiver geometries. These models can also serve as fast, powerful modeling tools for many nonlinear acoustics applications, especially in making diffraction corrections for the nonlinearity parameter determination, because of their computational efficiency and accuracy.

Non-Linear Behavior of Tapered Beams with Clamped-Roller Ends, subjected to a Concentrated Load (집중하중을 받는 변단면 고정-이동지점 보의 비선형 거동)

  • 이병구;이종국;최규문;김무영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.201-208
    • /
    • 2000
  • This paper explores the non-linear behavior of tapered beam subjected to a floating concentrated load. For applying the Bernoulli-Euler beam theory to this beam, the bending moment at any point of elastica is obtained from the final equilibrium state. By using the bending moment equation and the Bernoulli-Euler beam theory, the differential equations governing the elastica of clamped-roller beam are derived, and solved numerically. Three kinds of tapered beam types are considered. The numerical results of the non-linear behavior obtained in this study are agreed quite well to the results obtained from the laboratory-scale experiments.

  • PDF

Construction of the shape functions of beam vibrations for analysis of the rectangular plates by Kantorovich-Vlasov's method

  • Olodo, Emmanuel E.T.;Degan, Gerard
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.595-601
    • /
    • 2014
  • For analysis of the plates and membranes by numerical or analytical methods, the question of choice of the system of functions satisfying the different boundary conditions remains a major challenge to address. It is to this issue that is dedicated this work based on an approach of choice of combinations of trigonometric functions, which are shape functions of a bended beam with the boundary conditions corresponding to the plate support mode. To do this, the shape functions of beam vibrations for strength analysis of the rectangular plates by Kantorovich-Vlasov's method is considered. Using the properties of quasi-orthogonality of those functions allowed assessing to differential equation for every member of the series. Therefore it's proposed some new forms of integration of the beam functions, in order to simplify the problem.

Effect of a Partial Elastic Foundation on Dynamic Stability of a Cantilevered Timoshenko Beam under a Follower Force (종동력을 받는 외팔 Timoshenko보의 동적안정성에 미치는 부분탄성기초의 영향)

  • Ryu, Bong-Jo;Ryu, Si-Ung;Han, Hyun-Hee;Kim, Hyo-Jun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.911-916
    • /
    • 2004
  • The paper deals with the dynamic stability of a cantilevered Timoshenko beam on partial elastic foundations subjected to a follower force. The beam is assumed to be a Timoshenko beam with a concentrated mass taking into account its rotary inertia and shear deformation. Governing equations are derived by extended Hamilton's principle, and FEM is applied to solve the discretized equation. Critical follower force depending on the attachment ratios of partial elastic foundations, concentrated mass and rotary inertia of the beam is fully investigated.

  • PDF

Response of a completely free beam on a tensionless Pasternak foundation subjected to dynamic load

  • Celep, Z.;Guler, K.;Demir, F.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.1
    • /
    • pp.61-77
    • /
    • 2011
  • Static and dynamic responses of a completely free elastic beam resting on a two-parameter tensionless Pasternak foundation are investigated by assuming that the beam is symmetrically subjected to a uniformly distributed load and concentrated load at its middle. Governing equations of the problem are obtained and solved by paying attention on the boundary conditions of the problem including the concentrated edge foundation reaction in the case of complete contact and lift-off condition of the beam ina two-parameter foundation. The nonlinear governing equation of the problem is evaluated numerically by adopting an iterative procedure. Numerical results are presented in figures to demonstrate the non-linear behavior of the beam-foundation system for various values of the parameters of the problem comparatively by considering the static and dynamic loading cases.