• Title/Summary/Keyword: Beam data

Search Result 1,987, Processing Time 0.027 seconds

Predicting the failure modes of monotonically loaded reinforced concrete exterior beam-column joints

  • Bakir, Pelin G.;Boduroglu, Hasan M.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.307-330
    • /
    • 2002
  • This study aims at postulating a simple methodology for predicting the failure modes of monotonically loaded reinforced concrete beam-column joints. All the factors that affect the failure modes of joints are discussed in detail using an experimental database of monotonically loaded exterior beam-column joints. The relative contributions of the strut and truss mechanisms to joint shear strength are determined based on the test results. A simple design equation for the beam longitudinal reinforcement ratio for joints with low, medium and high amount of stirrups is developed. The factors influencing the failure modes of monotonically loaded exterior beam-column joints are investigated in detail. Design charts that predict the failure modes of exterior beam-column connections both with and without stirrups are developed. Experimental data are compared with the design charts. The results show that the simple methodology gives very accurate predictions of the failure modes.

The Development and Performance Analysis of Beam Rotating Actuator for Multi-Beam Disk Drive (다중빔 광디스크용 빔 회전 구동기의 제작과 특성평가)

  • Kim, Byeong-Jun;Kim, Su-Hyeon;Gwak, Yun-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3026-3032
    • /
    • 2000
  • To enhance the effective data transfer rate the multi-beam optical disk drive is presented. The Beam rotating actuator is necessary for putting multi-beam on more than one track. Ray tracing was also executed for real system set-up. The beam Rotating Actuator is made up of piezoelectric material, high stiffness wire hinge and dove prism. The actuator has about 1kHz natural frequency and suitable operational range. The dynamic equation for the actuator is derived for the control real system.

Photon Beam Commissioning for Monte Carlo Dose Calculation

  • Cho, Byung-Chul;Park, Hee-Chul;Hoonsik Bae
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.106-108
    • /
    • 2002
  • Recent advances in radiation transport algorithms, computer hardware performance, and parallel computing make the clinical use of Monte Carlo based dose calculations possible. Monte Carlo treatment planning requires accurate beam information as input to generate accurate dose distributions. The procedures to obtain this accurate beam information are called "commissioning", which includes accelerator head modeling. In this study, we would like to investigate how much accurately Monte Carlo based dose calculations can predict the measured beam data in various conditions. The Siemens 6MV photon beam and the BEAM Monte Carlo code were used. The comparisons including the percentage depth doses and off-axis profiles of open fields and wedges, output factors will be presented.

  • PDF

Shear Strength of Continuous Reinforced Concrete Beams without Web Reinforcement (전단보강철근이 없는 철근콘크리트 연속보의 전단강도)

  • Kim, Joon-Seong;Kim, Dae-Joong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.597-602
    • /
    • 2001
  • Most of the predicted shear strength of continuous R.C. beam whitout web reinforcement were accepted by testing simple beams. But the experimental results may show that a differential behavior on simple and continuous R.C. beam. In this study, estimated shear strength of continuous R.C. beam without web reinforcement with internal force state factors by test as purpose to apply available predicted equation to normal continuous R.C. beam. This equation is applied to experimentally tested data and the results were compared with those predicted by the codes. Predicted shear strength using force state factor can provide a tested data rather than codes which like ACI

  • PDF

Floor Vibration Analysis of Economic Steel (ES) Beam Using Field Measured Acceleration Responses (진동특성을 고려한 ES-빔 공법의 사용성능 평가)

  • Woo, Jong-Yeol;Park, Soo-Yong;Kim, Min-Jin;Hong, Seong-Wook;Doh, Sun-Boong;Choi, Tae-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.83-84
    • /
    • 2011
  • This study provides floor vibration analysis for a factory constructed by ES-beam using field measured acceleration data. The natural frequencies of the first two modes of floor are extracted from measured data. With this information, a system identification has been performed to produce a numerical model representing existing floor. The peak magnitudes of acceleration for one man walking heel drop load from experiment and numerical model are analyzed using ISO vibration criteria and AIJ vibration performance criteria. The results show that there is no problem in use of ES-beam.

  • PDF

Interfacial Stress Concentrations of Vertical Through-plate to H-beam Connections in CFT Column

  • Choi, Insub;Chang, HakJong;Kim, JunHee
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.325-334
    • /
    • 2020
  • This paper aims to evaluate the interfacial stress concentrations on connection between vertical through-plate and H-beam in CFT column. Full-scale experiments were performed on three specimens with varying thickness of the vertical through-plate to investigate the interfacial stress concentration factor in the connections. The specimens underwent brittle failure at the location where the steel beam is connected to the vertical through-plate before the steel beam reached its plastic moment. The strain data of the part were analyzed, and the sectional analyses were conducted to determine appropriate residual stress models. In addition, the stress concentration factor was quantified by comparing the analytical local behavior in which the stress concentration is not reflected and the experimental data reflecting the stress concentration. The results showed that the maximum reduction of the stress concentration factor due to an increase in the thickness of the vertical through-plate is 50.3%.

An Angular Independent Backscattered Amplitude Imagery of Multi-Beam Echo Sounder for Sediment Boundary Extraction

  • Park, Jo-Seph;Kim, Hi-Kil;Park, Seong-ho
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.663-663
    • /
    • 2002
  • The National Oceanographic Research Institute of KOREA started to survey for the basic data necessary to territorial sea and EEZ identification and marine development with Multi-Beam Echo Sounder(L3 SeaBeam 2112) since 1996. The Multi-Beam surveys has provided a very new and precise way of describing the morphology and nature of the underwater seabed. Multi-Beam Echo Sounder systems employ sound waves propagating at angles which vary from vertical to nearly horizontal. The locations on the bottom where echoes are generated cover a swath whose port to starboard width may be equal to many times the water depth. Newer Multi-beam bathymetric sonars provide both a beam by beam depth and backscatter amplitude of the bottom. But The backscattered amplitude didn't use for identification of bottom properties because backscatter amplitude effects by the many environmental variables of underwater and seabed. We investigates the utilization of geo-referenced backscatter amplitude and analysis of relationship between The Backscattered Amplitude and Sidescan Sonar imagery from Sea Beam 2112. For the backscattered amplitude imagery mainly represents the properties of sediment, we computed the beam geometry, time-varied amplifier gain, and mainly incidence angle to the topography using bathymetric model at each ping. In this paper, those issues are illustrated, and the angular independent imagery based on swath topographic model is described.

  • PDF

The Bearing Strength of Connections Between Steel Coupling Beam and Reinforced Concrete Shear Walls

  • Yun, Hyun Do;Park, Wan Shin;Han, Min Ki;Kim, Sun Woo;Kim, Yong Chul;Hwang, Sun Kyung
    • Architectural research
    • /
    • v.7 no.1
    • /
    • pp.27-38
    • /
    • 2005
  • No specific guidelines are available for computing the bearing strength of connection between steel coupling beam and reinforced concrete shear wall in a hybrid wall system. There were carried out analytical and experimental studies on connection between steel coupling beam and concrete shear wall in a hybrid wall system. The bearing stress at failure in the concrete below the embedded steel coupling beam section is related to the concrete compressive strength and the ratio of the width of the embedded steel coupling beam section to the thickness of the shear walls. Experiments were carried out to determine the factors influencing the bearing strength of the connection between steel coupling beam and reinforced concrete shear wall. The test variables included the reinforcement details that confer a ductile behavior in connection between steel coupling beam and shear wall, i.e., the auxiliary stud bolts attached to the steel beam flanges and the transverse ties at the top and the bottom steel beam flanges. In addition, additional test were conducted to verify the strength equations of the connection between steel coupling beam and reinforced concrete shear wall. The proposed equations in this study were in good agreement with both our test results and other test data from the literature.

Vibration analysis of a Timoshenko beam carrying 3D tip mass by using differential transform method

  • Kati, Hilal Doganay;Gokdag, Hakan
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.381-388
    • /
    • 2018
  • Dynamic behaviour of beam carrying masses has attracted attention of many researchers and engineers. Many studies on the analytical solution of beam with concentric tip mass have been published. However, there are limited works on vibration analysis of beam with an eccentric three dimensional object. In this case, bending and torsional deformations of beam are coupled due to the boundary conditions. Analytical solution of equations of motion of the system is complicated and lengthy. Therefore, in this study, Differential Transform Method (DTM) is applied to solve the relevant equations. First, the Timoshenko beam with 3D tip attachment whose centre of gravity is not coincident with beam end point is considered. The beam is assumed to undergo bending in two orthogonal planes and torsional deformation about beam axis. Using Hamilton's principle the equations of motion of the system along with the possible boundary conditions are derived. Later DTM is applied to obtain natural frequencies and mode shapes of the system. According to the relevant literature DTM has not been applied to such a system so far. Moreover, the problem is modelled by Ansys, the well-known finite element method, and impact test is applied to extract experimental modal data. Comparing DTM results with finite element and experimental results it is concluded that the proposed approach produces accurate results.