• Title/Summary/Keyword: Beam Vibration

Search Result 2,138, Processing Time 0.023 seconds

Output characteristics of a continuous wave deuterium fluoride chemical laser (연속발진 불화중수소 화학 레이저 출력특성)

  • 이정환;박병서;김재기
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.1
    • /
    • pp.65-69
    • /
    • 2002
  • A continuous wave deuterium fluoride (DF) chemical laser was designed and manufactured, and we have achieved DF laser beam generation with the maximum output power of 101 W. The gain medium is vibration-rotationally excited DF molecules produced by F+D$_2$ cold reaction through supersonic diffusion mixing in an optical cavity. F atoms are produced in a combustor by F$_2$+ H$_2$ reaction and injected into the cavity through a supersonic nozzle. The optimal chemical efficiency was measured to be 5.12% and specific power to be 96.5 J/g.

Dynamic Behavior of Laminated Orthotropic Cylindrical Shells (複合材 圓筒쉘의 動的 擧動 硏究)

  • 김천욱;김치균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1807-1815
    • /
    • 1992
  • The vibration characteristic of thin laminated orthotropic cylindrical shell is investigated based on the Donnell theory. The Rayleigh-Ritz variational procedure is employed. For the variety of shell end conditions, the beam characteristic function is used for the axial mode function. The result of the present analysis is in good agreement with some available analytical results and NASTRAN and BOSOR4 calculations. In the present study, the relation between natural frequencies and orthotropic parameter k is investigated. Introducing the frequency parameter, this study shows that the frequency parameter increases as the orthotropic parameter k approaches to one.

Optimal feedback control of a flexible one-link robotic manipulator (유연한 단일링크 로봇 조작기의 최적귀환제어)

  • 하영균;김승호;이상조;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.923-934
    • /
    • 1987
  • A flexible one-link robotic manipulator is modelled as a rotating cantilever beam with a hub and tip mass. An active control law is developed with consideration of the distributed flexibility of the arm. Equation of motion is derived by Hamilton's principle and, for modal control, represented as state variable form using Galerkin's mode summation method. Feedback coefficients are chosen to minimize the linear quadratic performance index(PI). To reconstruct the complete state vector from the measurements, an observer is proposed. In order to suppress vibration of the manipulator arm to desirable extent and to obtain accuracy of the positioning, weighting factor of input in PI is adjusted. Spillover effect due to the controller which controls several important modes is examined. Experiment is also performed to validate the theoretical analysis.

Electron Mean Energy in CF4, CH4, Ar mixtures (CF4, CH4, Ar 혼합기체의 전자 평균에너지)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.241-245
    • /
    • 2015
  • Energy Distribution Function in pure $CH_4$, $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $CH_4$, $CF_4$ and Ar, were used. The differences of the transport coefficients of electrons in $CH_4$, mixtures of $CH_4$ and Ar, have been explained by the deduced energy distribution functions for electrons and the complete collision cross-sections for electrons. The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4$-Ar mixtures shows the Maxwellian distribution for energy. That is, $f({\varepsilon})$ has the symmetrical shape whose axis of symmetry is a most probably energy.

Design and Analysis of Flexbeam in SNUF Blade Equipped with Active Trailing-Edge Flap for Helicopter Vibratory Load Reduction (헬리콥터 진동 하중 저감을 위한 능동 뒷전 플랩이 장착된 SNUF 블레이드의 유연보의 설계 및 해석)

  • Im, Byeong-Uk;Eun, Won-Jong;Shin, SangJoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.542-550
    • /
    • 2018
  • This paper presents design of a bearingless main rotor of SNUF (Seoul National University Flap) blade equipped with active trailing-edge flap to reduce the hub vibratory loads during helicopter forward flight. For that purpose, sectional design of the flexbeam is carried out using the thin-walled composite material rotating beam vibration analysis program (CORBA77_MEMB) in EDISON. Using the multi-body dynamics analysis program, DYMORE, blade dynamic characteristics and those of the loads control are examined using the active trailing-edge flap in terms of the flexbeam sectional design.

Probabilistic Analysis of Dynamic Characteristics of Structures considering Joint Fastening and Tolerance (체결부 및 공차를 고려한 구조물의 확률기반 동적 특성 연구)

  • Won, Jun-Ho;Kwang, Kang-Jin;Choi, Joo-Ho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.44-50
    • /
    • 2010
  • Structural vibration is a significant problem in many multi-part or multi-component assemblies. In aircraft industry, structures are composed of various fasteners, such as bolts, snap, hinge, weld or other fastener or connector (collectively "fasteners"). Due to these, prediction and design involving dynamic characteristics is quite complicated. However, the current state of the art does not provide an analytical tool to effectively predict structure's dynamic characteristics, because consideration of structural uncertainties (i.e. material properties, geometric tolerance, dimensional tolerance, environment and so on) is difficult and very small fasteners in the structure cause a huge amount of analysis time to predict dynamic characteristics using the FEM (finite element method). In this study, to resolve the current state of the art, a new approach is proposed using the FEM and probabilistic analysis. Firstly, equivalent elements are developed using simple element (e.g. bar, beam, mass) to replace fasteners' finite element model. Developed equivalent elements enable to explain static behavior and dynamic behavior of the structure. Secondly, probabilistic analysis is applied to evaluate the PDF (probability density function) of dynamic characteristics due to tolerance, material properties and so on. MCS (Monte-Carlo simulation) is employed for this. Proposed methodology offers efficiency of dynamic analysis and reality of the field as well. Simple plates joined by fasteners are taken as an example to illustrate the proposed method.

Energy absorption of the ring stiffened tubes and the application in blast wall design

  • Liao, JinJing;Ma, Guowei
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.713-727
    • /
    • 2018
  • Thin-walled mental tubes under lateral crushing are desirable and reliable energy absorbers against impact or blast loads. However, the early formations of plastic hinges in the thin cylindrical wall limit the energy absorption performance. This study investigates the energy absorption performance of a simple, light and efficient energy absorber called the ring stiffened tube. Due to the increase of section modulus of tube wall and the restraining effect of the T-stiffener flange, key energy absorption parameters (peak crushing force, energy absorption and specific energy absorption) have been significantly improved against the empty tube. Its potential application in the offshore blast wall design has also been investigated. It is proposed to replace the blast wall endplates at the supports with the energy absorption devices that are made up of the ring stiffened tubes and springs. An analytical model based on beam vibration theory and virtual work theory, in which the boundary conditions at each support are simplified as a translational spring and a rotational spring, has been developed to evaluate the blast mitigation effect of the proposed design scheme. Finite element method has been applied to validate the analytical model. Comparisons of key design criterions such as panel deflection and energy absorption against the traditional design demonstrate the effectiveness of the proposed design in blast alleviation.

A new method to detect cracks in plate-like structures with though-thickness cracks

  • Xiang, Jiawei;Nackenhorst, Udo;Wang, Yanxue;Jiang, Yongying;Gao, Haifeng;He, Yumin
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.397-418
    • /
    • 2014
  • In this paper, a simple two-step method for structural vibration-based health monitoring for beam-like structures have been extended to plate-like structures with though-thickness cracks. Crack locations and severities of plate-like structures are detected using a hybrid approach. The interval wavelet transform is employed to extract crack singularity locations from mode shape and support vector regression (SVR) is applied to predict crack serviettes form crack severity detection database (the relationship of natural frequencies and crack serviettes) using several natural frequencies as inputs. Of particular interest is the natural frequencies estimation for cracked plate-like structures using Rayleigh quotient. Only the natural frequencies and mode shapes of intact structures are needed to calculate the natural frequencies of cracked plate-like structures using a simple formula. The crack severity detection database can be easily obtained with this formula. The hybrid method is investigated using numerical simulation and its validity of the usage of interval wavelet transform and SVR are addressed.

A Structural Analysis of the Tracked Vehicle (궤도차량의 차체구조해석)

  • Lee, Young-Shin;Choi, Chang;Jun, Byoung-Hee;Oh, Jae-Moon
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.145-155
    • /
    • 1997
  • In this study, static and dynamic transient analysis of tracked vehicle structure with recoil impact load is performed for transient impact and traveling load using ANSYS and ABAQUS FEM codes. When transient impact loads are applied at tracked vehicle, the maximum dynamic Von Mises stress occurs between beam stiffener of upper plate and race ring and stress level is about 390-450 MPa. The results of transient analysis shows similar level and tendency with static stress with dynamic force effect of 1.6. The excessive stresses occur around the race ring for the both cases. When the traveling loads are applied on the tracked vehicle, the maximum Tresca stress occurs around suspension #1 and is about 450 MPa and results of static and nonlinear transient analysis are quite similar.

  • PDF

The Influence of Inertial Moment of Tip Mass on the Stability of Beck's Column (말단질량 의 관성모우멘트 가 Beck's Column 의 안정성 에 미치는 영향)

  • 윤한익;김광식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.119-126
    • /
    • 1984
  • An analysis is presented for the vibration and stability of Beck's column carring a tip mass at its free and subjected there to a follower compressive force by using variational approach. The influence of transverse shear deformation and rotatory inertial of the mass of the column upon the critical flutter load and frequency is considered, and Timoshenko's shear coefficient K' is calculated by Cowper's formulae. It is, moreover, worth noticing that the influence of inertial moment of tip mass upon the flutter load and frequency is investigated. The centroid of a tip mass is offset from the free end of the beam and located along its extended axis of the two cases, one of which has a tip mass increasing as .xi., the tip mass offset parameter, is augmented, the other has a tip mass constant but the inertial moment is variable according to a magnitude of .eta., the tip mass offset parament. This study reveals that the effects of inertial moment of a tip mass and larger value of P are specially remarkable even a tip mass is a same.