• Title/Summary/Keyword: Beam Transfer Function Method

Search Result 51, Processing Time 0.034 seconds

Evaluation of the Spatial Resolution for Exposure Class in Computed Radiography by Using the Modulation Transfer Function (변조전달함수를 이용한 컴퓨터 방사선영상의 감도 노출 분류에 따른 공간분해능 평가)

  • Seoung, Youl-Hun
    • Journal of Digital Convergence
    • /
    • v.11 no.8
    • /
    • pp.273-279
    • /
    • 2013
  • The purpose of the study was to present basic data to evaluation of the spatial resolution for exposure class(EC) in computed radiography(CR) by using the modulation transfer function(MTF). In this study, MTF was measured the edge method by using image plate(IP) of $100{\mu}mm$ pixels. A standard beam quality RQA5 based on an international electro-technical commission(IEC) standard was used to perform the X-ray imaging studies. Digital imaging began to set the sensitivity to EC 50, 100, 200, 300, 400, 600, 800, 1200 in X-ray irradiated to IP. The MTF 50% and 10% in the final images was analysis by using an authorized image analysis program the Origin 8.0 and the image J. As a results, the EC 200 was the best spatial resolution at MTF 50% ($1.979{\pm}0.114lp/mm$) and MTF 10% ($3.932{\pm}0.041$). Therefore, the EC 200 could be useful for the diagnosis of diseases that require high spatial resolution such as fractures.

Structural Optimization for LMTT-Mover Using Sequential Kriging Based Approximation Model (순차적 크리깅 근사모델을 이용한 LMTT 이송체의 구조최적설계)

  • Park Hyung Wook;Han Dong Seop;Lee Kwon Hee;Han Geun Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.289-295
    • /
    • 2005
  • LMTT (Linear Motor-based Transfer Techn-ology) is a horizontal transfer system for the yard automation This system is based on PMLSM (Permanent Magnetic Linear Synchronous Motor) toot consists of stator modules on the rail and shuttle car. In this research, the kriging interpolation method with sequential sampling find the optimum design of mover in LMTT. The design variables are considered as the transverse, longitudinal and wheel beam's thicknesses. The objective function is set up as weight, while the constant function are set up as the stresses generated by four loading conditions. The objective function is set up as weight. The optimum results obtained by the suggested method are compared with those by the GENESIS.

  • PDF

Active Vibration Control of a Cantilever Beam Using Piezoelectric Sensor/Actuator (압전형 감지기/작동기를 이용한 외팔보의 능동 진동 제어)

  • Choi, Soo-Young;Kim, Jin-Tae;Jung, Tae-Soo;Kang, Ki-Won;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2123-2125
    • /
    • 2002
  • This paper presents the use of piezoelectric ceramics for sensing and actuation purposes for vibration control. The PZT sensors and actuators are designed and fabricated. The transfer function of the beam is obtained via the Lagrangian method.

  • PDF

Structural Health Monitoring Based on Wave Propagation Characteristics (파동전파특성에 기초한 구조 건전도 모니터링)

  • Kim, Seung-Joon;Park, Jun-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.311-314
    • /
    • 2007
  • The experimental method of measuring dynamic properties of structures was presented. The method is based on the flexural wave propagation characteristics. Using the method, change in structural dynamic properties due to damage is measured. The crack has much more significant impact on the strain energy than the inertial effects. From this, the sensitivity of the dynamic stiffness on the crack location is estimated by calculating the strain energy. When the wave propagates, the strain and kinetic energies shows cyclic changed over space. The crack that occurred at locations where the wave energy is in the form of the potential energy affected most significantly the wave propagation characteristics. The effects of crack location on the wave propagation were used to determine the crack location.

  • PDF

CPT-based p-y analysis for mono-piles in sands under static and cyclic loading conditions

  • Kim, Garam;Kyung, Doohyun;Park, Donggyu;Lee, Junhwan
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.313-328
    • /
    • 2015
  • In the present study, a CPT-based p-y analysis method was proposed for offshore mono-piles embedded in sands. Static and cyclic loading conditions were both taken into account for the proposed method. The continuous soil profiling capability of CPT was an important consideration for the proposed method, where detailed soil profile condition with depth can be readily incorporated into the analysis. The hyperbolic function was adopted to describe the non-linear p-y curves. For the proposed hyperbolic p-y relationship, the ultimate lateral soil resistance $p_u$ was given as a function of the cone resistance, which is directly introduced into the analysis as an input data. For cyclic loading condition, two different cyclic modification factors were considered and compared. Case examples were selected to check the validity of the proposed CPT-based method. Calculated lateral displacements and bending moments from the proposed method were in good agreement with measured results for lateral displacement and bending moment profiles. It was observed the accuracy of calculated results for the conventional approach was largely dependent on the selection of friction angle that is to be adopted into the analysis.

Measurements of the vibration responses of CLD structures varied in thickness of the damping layer (제진층의 두께변화에 따른 CLD 구조의 진동응답 측정)

  • Lee, Sin-Young;Yoo, Seung-Yup;Jeon, Jin-Yong;Kim, Seung-Joon;Park, Jun-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1463-1466
    • /
    • 2007
  • Visco-elastic damping material for reducing heavy-weight floor impact noise and vibration in reinforced concrete structures was tested according to its thickness in the damping layer. The effect of damping material was compared with 20, 15, 10 and 5mm thickness. The wave propagation characteristics was measured for suggestion of an efficient method to reduce the floor impact noise. The method was proposed using the flexural wave propagation characteristics. The result showed that reduction of the thickness of damping layer made a slight difference; the natural frequency moved to higher frequency and the amplitude increased at low frequencies with 5mm thickness of damping material.

  • PDF

On the Errors of the Phased Beam Tracing Method for the Room Acoustic Analysis (실내음향 해석을 위한 위상 빔 추적법의 사용시 오차에 관하여)

  • Jeong, Cheol-Ho;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • To overcome the mid frequency limitation of geometrical acoustic techniques, the phased geometrical method was suggested by introducing the phase information into the sound propagation from the source. By virtue of phase information, the phased tracing method has a definite benefit in taking the interference phenomenon at mid frequencies into account. Still, this analysis technique has suffered from difficulties in dealing with low frequency phenomena, so called, wave nature of sound. At low frequencies, diffraction at corners, edges, and obstacles can cause errors in simulating the transfer function and the impulse response. Due to the use of real valued absorption coefficient, simulated results have shown a discrepancy with measured data. Thus, incorrect phase of the reflection characteristic of a wall should be corrected. In this work, the uniform theory of diffraction was integrated into the phased beam tracing method (PBTM) and the result was compared to the ordinary PBTM. By changing the phase of the reflection coefficient, effects of phase information were investigated. Incorporating such error compensation methods, the acoustic prediction by PBTM can be further extended to low frequency range with improved accuracy in the room acoustic field.

Evaluation of the Finite Element Modeling of Spot-Welded Region for Crash Analysis (충돌해석에서의 점용접부 모델링에 따른 하중특성 평가)

  • Song, Jung-Han;Huh, Hoon;Kim, Hong-Gee;Kim, Sung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.174-183
    • /
    • 2006
  • The resistance spot-welded region in most current finite element crash models is characterized as a rigid beam at the location of the welded spot. The region is modeled to fail with a failure criterion which is a function of the axial and shear load at the rigid beam. The role of this rigid beam is simply to transfer the load across the welded components. The calculation of the load acting on the rigid beam is important to evaluate the failure of the spot-weld. In this paper, numerical simulation is carried out to evaluate the calculation of the load at the rigid beam. The load calculated from the precise finite element model of the spot-welded region considering the residual stress due to the thermal history during the spot welding procedure is regarded as the reference value and the value of the load is compared with the one obtained from the spot-welded model using the rigid beam with respect to the element size, the element shape and the number of imposed constraints. Analysis results demonstrate that the load acting on the spot-welded element is correctly calculated by the change of the element shape around the welded region and the location of welded constrains. The results provide a guideline for an accurate finite element modeling of the spot-welded region in the crash analysis of vehicles.

Performance Characteristic of a CsI(Tl) Flat Panel Detector Radiography System (CsI(TI) Indirect Flat Panel Detector의 선질에 따른 물리적 영상 평가)

  • Jeong, Hoi-Woun;Min, Jung-Hwan;Kim, Jung-Min;Park, Min-Seok;Lee, Gaung-Young
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.109-117
    • /
    • 2012
  • The purpose of this work was to evaluate an amorphous silicon cesium iodide based indirect flat-panel detector (FPD) in terms of their modulation transfer function (MTF), Wiener spectrum (WS, or noise power spectrum, NPS), and detective quantum efficiency (DQE). Measurements were made on flat-panel detector using the International Electrotechnical Commission (IEC) defined RQA3, RQA5, RQA7, and RQA9 radiographic technique. The MTFs of the systems were measured using an edge method. The WS(NPS) of the systems were determined for a range of exposure levels by two-dimensional (2D). Fourier analysis of uniformly exposed radiographs. The DQEs were assessed from the measured MTF, WS(NPS), exposure, and estimated ideal signal-to-noise ratios. Characteristic curve in the RQA3 showed difference in the characteristic curve from RQA5, RQA7, RQA9. MTFs were not differences according to x-ray beam quality. WS(NPS) was reduced with increasing dose, and RQA 3, RQA5, RQA7, RQA9 as the order is reduced. DQE represented the best in the 1mR, RQA 3, RQA5, RQA7, RQA9 decrease in the order. The physical imaging characteristics of FPD may also differ from input beam quality. This study gives an initial motivation that the physical imaging characteristics of FPD is an important issue for the right use of digital radiography system.

Evaluation of Image Quality for Various Electronic Portal Imaging Devices in Radiation Therapy (방사선치료의 다양한 EPID 영상 질평가)

  • Son, Soon-Yong;Choi, Kwan-Woo;Kim, Jung-Min;Jeong, Hoi-Woun;Kwon, Kyung-Tae;Cho, Jeong-Hee;Lee, Jea-Hee;Jung, Jae-Yong;Kim, Ki-Won;Lee, Young-Ah;Son, Jin-Hyun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.451-461
    • /
    • 2015
  • In megavoltage (MV) radiotherapy, delivering the dose to the target volume is important while protecting the surrounding normal tissue. The purpose of this study was to evaluate the modulation transfer function (MTF), the noise power spectrum (NPS), and the detective quantum efficiency (DQE) using an edge block in megavoltage X-ray imaging (MVI). We used an edge block, which consists of tungsten with dimensions of 19 (thickness) ${\times}$ 10 (length) ${\times}$ 1 (width) $cm^3$ and measured the pre-sampling MTF at 6 MV energy. Various radiation therapy (RT) devices such as TrueBeam$^{TM}$ (Varian), BEAMVIEW$^{PLUS}$ (Siemens), iViewGT (Elekta) and Clinac$^{(R)}$iX (Varian) were used. As for MTF results, TrueBeam$^{TM}$(Varian) flattening filter free(FFF) showed the highest values of $0.46mm^{-1}$ and $1.40mm^{-1}$ for MTF 0.5 and 0.1. In NPS, iViewGT (Elekta) showed the lowest noise distribution. In DQE, iViewGT (Elekta) showed the best efficiency at a peak DQE and $1mm^{-1}DQE$ of 0.0026 and 0.00014, respectively. This study could be used not only for traditional QA imaging but also for quantitative MTF, NPS, and DQE measurement for development of an electronic portal imaging device (EPID).