• Title/Summary/Keyword: Beam Radiation

Search Result 1,761, Processing Time 0.024 seconds

Geant4 Code Based Simulation of 6 MV Photon Beam for Analysis of Dose Distribution (Geant4 코드를 이용한 선형가속기 6 MV 광자선의 선량분포에 관한 연구)

  • Lee, Jun-Seong;Kim, Yang-Soo;Lee, Sun-Young
    • Journal of radiological science and technology
    • /
    • v.45 no.5
    • /
    • pp.449-455
    • /
    • 2022
  • This study is to present a Geant4 code for the simulation of the absorbed dose distribution given by a medical linac for 6 MV photon beam. The dose distribution was verified by comparison with calculated beam data and beam data measured in water phantom. They were performed for percentage depth dose(PDD) and beam profile of cross-plane for two field sizes of 10 × 10 and 15 × 15 cm2. Deviations of a percentage and distance were obtained. In energy spectrum, the mean energy was 1.69 MeV. Results were in agreement with PDD and beam profile of the phantom with a tolerance limit. The differences in the central beam axis data 𝜹1 for PDD had been less than 2% and in the build up region, these differences increased up to 4.40% for 10 cm square field. The maximum differences of 𝜹2 for beam profile were calculated with a result of 4.35% and 5.32% for 10 cm, 15 cm square fields, respectively. It can be observed that the difference was below 4% in 𝜹3 and 𝜹4. For two field sizes of 𝜹50-90 and RW50, the results agreed to within 2 mm. The results of the t-test showed that no statistically significant differences were found between the data for PDD of 𝜹1, p>0.05. A significant difference on PDD was observed for field sizes of 10 × 10 cm2, p=0.041. No significant differences were found in the beam profile of 𝜹3, 𝜹4, RW50, and 𝜹50-90. Significant differences on beam profile of 𝜹2 were observed for field sizes of 10 × 10 cm2, p=0.025 and for 15 × 15 cm2, p=0.037. This work described the development and reproducibility of Geant4 code for verification of dose distribution.

Evaluation of a Curtain-Type Radiation Protection Device for Veterinary Interventional Procedures

  • Minsik Choi;Jaepung Han;Changgyu Lim;Jiwoon Park;Sojin Kim;Uhjin Kim;Jinhwa Chang;Dongwoo Chang;Namsoon Lee
    • Journal of Veterinary Clinics
    • /
    • v.41 no.3
    • /
    • pp.157-164
    • /
    • 2024
  • The standard radiation protection method in the angiography suite involves the use of a thyroid shield, a lead apron, and lead glasses. However, exposure to substantial amounts of ionizing radiation can cause cataracts, tumors, and skin erythema. A newly developed curtain-type radiation protection device consists of a curtain drape composed of a five-layer bismuth and lead acrylic head-shielding plate, with both bearing an equivalent 0.25 mm lead thickness. In this study, a quality assurance phantom was used as the patient to create radiation scatter from the radiographic source, and an anthropomorphic mannequin phantom was used as the interventionalist to measure the radiation dose at seven different anatomical locations. Thermoluminescent dosimeters were used to measure the radiation dose. The experimental groups consisted of all-sided or one-sided curtain set-ups, the presence or absence of a conventional shielding system, and the orientation of beam irradiation. Consequently, the curtain-type radiation protection device exhibited better radiation protection range and capabilities than conventional radiation protection systems, especially in safeguarding the forehead, eyes, arms, and feet, with minimal radiation exposure. Moreover, the mean shielding ratios of the conventional shielding system and curtain-type radiation protection device were measured at 51.94% and 93.86%, respectively. Additionally, no significant decrease in the radiation protection range or capability was observed, even with changes in the beam orientation or one-sided protection. Compared with a conventional shielding system, the curtain-type radiation protection device decreased radiation exposure doses and improved comfort. Therefore, it is a potential new radiation protection device for veterinary interventional procedures.

The Simulation on Dose Distributions of the 6 MeV Electron Beam in Water Phantom (6 MeV 전자선의 물팬텀 속의 선량분포에 관한 모의계산)

  • Lee, Jeong-Ok;Jeong, Dong-Hyeok;Moon, Sun-Rock
    • Journal of radiological science and technology
    • /
    • v.23 no.2
    • /
    • pp.75-79
    • /
    • 2000
  • This study was performed for the clinical applications applying the Monte Carlo methods. In this study we calculated the absorbed dose distributions for the 6 MeV electron beam in water phantom and compared the results with measured values. The energy data of electron beam used in Monte Carlo calculation is the energy distribution for 6 MeV electron beam which is assumed as a Gaussian form. We calculated percent depth doses and beam profiles for three field sizes of $10{\times}10,\;15{\times}15$, and $20{\times}20\;cm^2$ in water phantom using Monte Carlo methods and measured those data using a semiconductor detector and other devices. We found that the calculated percent depth doses and beam profiles agree with the measured values approximately. However, the calculated beam profiles at the edge of the fields were estimated to be lower than the measured values. The reason for that result is that we did not consider the angular distributions of the electrons in phantom surface and contamination of X-rays in our calculations. In conclusion, in order to apply the Monte Carlo methods to the clinical calculations we are to study the source models for electron beam of the linear accelerator beforehand.

  • PDF

Radiotherapy Treatment Planning using Computed Tomography in Breast Cancer (유방암에서 CT planning를 이용한 치료계획)

  • 김성규;신세원;김명세
    • Progress in Medical Physics
    • /
    • v.3 no.2
    • /
    • pp.59-65
    • /
    • 1992
  • Carcimoma of the breast are first frequency malignancy in women in the world. third frequency in Korea. Radiation therapy in breast cancer were treated through opposed tangential fields with photon beam or electron beam. Density within the field and thickness to tumor are very importent factors determining dose distribution in radiation therapy of electron beam. Radiotherapy traetment planning using computed tomography in Breast cancer are able to ideal dose distribution. Authors concluded as following. 6MeV energy of electron beam propered below 1.5cm in chest wall's thickness or internal mammary lymphnode's depth. 9MeV energy of electron beam from 1.5cm to 2.0cm. 12 MeV energy of electron beam from 2.0cm to 2.5cm.

  • PDF

Dosimetry for Total Skin Electron Beam Therapy in Skin Cancer (피부암치료를 위한 전자선 전신피부 치료방법과 선량분포 측정)

  • Chu, Sung-Sil;Loh, John-Jk;Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • v.10 no.1
    • /
    • pp.107-113
    • /
    • 1992
  • Increasing frequency of skin cancer, mycosis fungoides, Kaposi's sarcoma etc, it need to treatment dose planning for total skin electron beam (TSEB) therapy. Appropriate treatment planning for TSEB therapy is needed to give homogeneous dose distribution throughout the entire skin surface. The energy of 6 MeV electron from the 18 MeV medical linear accelerator was adapted for superficial total skin electron beam therapy. The energy of the electron beam was reduced to 4.2 MeV by a $0.5\;cm\times90\;cm{\times}180\;cm$ acryl screen placed in a feet front of the patient. Six dual field beam was adapted for total skin irradiation to encompass the entire body surface from head to toe simultaneously. The patients were treated behind the acryl screen plate acted as a beam scatterer and contained a parallel-plate shallow ion chamber for dosimetry and beam monitoring. During treatment, the patient was placed in six different positions due to be homogeneous dose distribution for whole skin around the body. One treatment session delivered 400 cGy to the entire skin surface and patients were treated twice a week for eight consecutive weeks, which is equivalent to TDF value 57. instrumentation and techniques developed in determining the depth dose, dose distribution and bremsstrahlung dose are discussed.

  • PDF

Analysis of Beam Hardening of Modulation Layers for Dual Energy Cone-beam CT (에너지 변조 필터로 구현한 이중 에너지 콘빔 CT의 에너지 스펙트럼 평가 연구)

  • Ahn, Sohyun;Cho, Sam Ju;Keum, Ki Chang;Choi, Sang Gyu;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.27 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • Dual energy cone-beam CT can distinguish two materials with different atomic compositions. The principle of dual energy cone-beam CT based on modulation layer is that higher energy spectrum can be acquired at blocked x-ray window. To evaluate the possibility of modulation layer based dual energy cone-beam CT, we analyzed x-ray spectrum for various thicknesses of modulation layers by Monte Carlo simulation. To compare with the results of simulation, the experiment was performed on prototype cone-beam CT for 50~100 kVp with CdTe XR-100T detector. As the result of comparing, the mean energy of energy spectrum for 80 kVp are well matched with that of simulation. The mean energy of energy spectrum for 80 and 120 kVp were increased as 1.67 and 1.52 times by 2.0 mm modulation layer, respectively. We realized that the virtual dual energy x-ray source can be generated by modulation layer.

Chamber-to-chamber Variations in the Same Type of a Cylindrical Chamber for the Measurements of Absorbed Doses (흡수선량 측정 시 동종 원통형 이온함에서 이온함 간 변화)

  • Kim, Seong-Hoon;Huh, Hyun-Do;Choi, Sang-Hyun;Kim, Hyeog-Ju;Lim, Chun-Il;Shin, Dong-Oh;Choi, Jin-Ho
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.120-125
    • /
    • 2010
  • For the measurements of an absorbed dose using the standard dosimetry based on an absorbed dose to water the variety of factors, whether big, small, or tiny, may influence the accuracy of dosimetry. The beam quality correction factor ${\kappa}_{Q,Q_0}$ of an ionization chamber might also be one of them. The cylindrical type of ionization chamber, the PTW30013 chamber, was chosen for this work and 9 chambers of the same type were collected from several institutes where the chamber types are used for the reference dosimetry. They were calibrated from the domestic Secondary Standard Dosimetry Laboratory with the same electrometer and cable. These calibrated chambers were used to measure absorbed doses to water in the reference condition for the photon beam of 6 MV and 10 MV and the electron beam of 12 MeV from Siemens ONCOR. The biggest difference among chambers amounts to 2.4% for the 6 MV photon beam, 0.8% for the 10 MV photon beam, and 2.4% for the 12 MeV electron beam. The big deviation in the photon of 6 MV demonstrates that if there had been no problems with the process of measurements application of the same ${\kappa}_{Q,Q_0}$ to the chambers used in this study might have influenced the deviation in the photon 6 MV and that how important an external audit is.

Evaluation of Detection Performance of TlBr Materials for the Development of Electron Beam Quality Assurance Dosimeters (전자선 Quality Assurance 선량계 개발을 위한 TlBr 물질의 검출성능 평가)

  • Yang, Seung-Woo;Park, Sung-Kwang
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.513-518
    • /
    • 2022
  • Electron beam quality assurance (QA) should be done regularly for accurate radiation therapy. However, QA tools used in clinical practice are designed mainly for X-rays. So, a dosimeter for electron beam QA is required. Therefore, in this study, the electron beam detection performance was measured by using a thorium bromide material as an electron beam sensor. In addition, it was evaluated whether it could be applied with an electron beam QA dosimeter. Reproducibility, linearity, and dose rate dependence were evaluated at 6 MeV and 9 MeV energies. As a result of reproducibility, it showed a maximum output change of 0.92% at 6 MeV and 1.15% at 9 MeV. The linearity result evaluation and determination coefficient were presented as 0.9998. As a result of dose rate dependence evaluation, relative standard deviation 0.51% at 6 MeV and relative standard deviation 1.07% at 9 MeV were presented. The manufactured TlBr sensor shows the ability to detect radiation that meets the criteria for evaluation of reproducibility, linearity, and dose rate dependence. These results mean that the TlBr dosimeter is applicable as an electron beam QA dosimeter.

Radiation Protective Effect of the Thyroid Gland Using Bolus Protector in the Dental Cone Beam Computed Tomography (치과 콘빔 전산화단층검사 시 보루스 차폐체를 이용한 갑상선의 방사선 차폐효과)

  • Lee, Tae Hui;Jeong, Seung Hun;Kim, Dong Woo;Park, Myeong Hwan;Kim, Tae-Hyung
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.459-464
    • /
    • 2019
  • In order to minimize the radiation exposure dose of the thyroid site at dental cone-beam computer tomography, a protector using a Bolus was prepared, and the radiation shielding effect and the appropriateness of the image were evaluated. Using a dental cone-beam computed tomography (CBCT), a glass dosimeter was attached to the left and right sides of the thyroid for a dental radiation phantom, and the radiation dose was measured. The absorbed dose for each shield was measured by another method to 10 mm, 20 mm, and 30 mm-thickness, respectively. Eight evaluators evaluated whether or not the medical image is appropriate. When using a 30 mm Bolus shield at the left thyroid site, the resulting value is reduced by an average of $342.67{\mu}Gy$ by 20.7% from the average value of $431.22{\mu}Gy$ measured without using a Bolus shield, the right thyroid site In the case of using 30 mm Bolus shield, it showed a dose reduction effect of 21.9% with an average of $424.56{\mu}Gy$. The adequacy of the medical image was judged to be usable by both evaluators. In conclusion, the dental cone-beam computerized tomography can be used as a useful shielding material because it has a radiation shielding effect and it is possible to treat the diagnosis of the bolus protector in the thyroid without any obstruction shade in order to minimize the radiation dose.

A New Technique for Whole Craniospinal Irradiation (WCSI) (새로운 전중추신경 방사선 조사법 ; 방사선속의 발산에 의한 선량의 불균일성을 극복하기 위한 치료 방법)

  • Chang, Hye-Sook
    • Radiation Oncology Journal
    • /
    • v.9 no.1
    • /
    • pp.159-164
    • /
    • 1991
  • To irradiate the entire neuroaxis, bilateral parallel opposed brain fields and direct posterior spinal field have been utilized and radiation dose at the junction between abutting fields has been extensilvely studied. And several workable methods were reported to achieve uniform dose at a desired depth at the juction between abutting fields whose central axis are coplanar. But the dose distribhution at the juction of orthogonal fields has been a persistent problem in radiation oncology. Author describes a new method to solve the junction problem between abutting fields whose central axis are orthogonal. Author utilized split beam/comllimator rotation or collimator/couch rotation to avoid hot or cold spots that may arise from beam divergence. Author achieved accurate and homogeneous dose distribution by mathching the $50\%$ isodose line at the junction between orthogonal central axis beam fields.

  • PDF