• Title/Summary/Keyword: Beam On Elastic Foundation

Search Result 236, Processing Time 0.025 seconds

Effect of viscous Damping on the Stability of Beam Resting on an Elastic Foundation Subjected to Dry friction force (점성감쇠가 건성마찰력을 받는 탄성지지 보의 안정성에 미치는 효과)

  • 장탁순;고준빈;류시웅
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.179-185
    • /
    • 2004
  • The effect of viscous damping on stability of beam resting on an elastic foundation subjected to a dry friction force is analytically studied. The beam resting on an elastic foundation subjected to dry friction force is modeled for simplicity into a beam resting on Kelvin-Voigt type foundation subjected to distributed follower load. In particular, the effects of four boundary conditions (clamped-free, clamped-pinned, pinned-pinned, clamped-clamped) on the system stability are considered. The critical value and instability type of columns on the elastic foundation subjected to a distributed follower load is investigated by means of finite element method for four boundary conditions. The elastic foundation modulus, viscous damping coefficient and boundary conditions affect greatly both the instability type and critical load. Also, the increase of damping coefficient raises the critical flutter load (stabilizing effect) but reduces the critical divergence load (destabilizing effect).

Analysis of Beam Resting on Hyperbolic Winkler Elastic Foundation by Differential Transformation (미분 변환법에 의한 쌍곡선형태 Winkler 탄성 지반상의 보 해석)

  • Shin, Yung-Jae;Yun, Jong-Hak;Jaun, Su-Ju
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1060-1065
    • /
    • 2002
  • In this paper, the numerical analysis of beam rest ing on hyperbolic Winkler elastic foundation by differential transformation is performed. Accordig to the change of parameter of hyperbolic Winkler elastic foundation, beam deformation is computed when the boundary conditions are clamped-clamped, pined-pined and clamped-free.

  • PDF

Analysis of Beam Resting on Hyperbolic Winkler Elastic Foundation by Differential Transformation (미분 변환법에 의한 쌍곡선형태 Winkler 탄성 지반상의 보 해석)

  • Shin, Young-Jae;Yun, Jong-Hak;Jaun, Su-Ju
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.402.2-402
    • /
    • 2002
  • In this paper, the numerical analysis of beam resting on hyperbolic Winkler elastic foundation by differential transformation is performed. Accordig to the change of parameter of hyperbolic Winkler elastic foundation, beam deformation is computed when the boundary conditions are clamped-clamped, pined-pined and clamped-free.

  • PDF

Natural Frequencies of Euler-Bernoulli Beam with Open Cracks on Elastic Foundations

  • Shin Young-Jae;Yun Jong-Hak;Seong Kyeong-Youn;Kim Jae-Ho;Kang Sung-Hwang
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.467-472
    • /
    • 2006
  • A study of the natural vibrations of beam resting on elastic foundation with finite number of transverse open cracks is presented. Frequency equations are derived for beams with different end restraints. Euler-Bernoulli beam on Pasternak foundation and Euler-Bernoulli beam on Pasternak foundation are investigated. The cracks are modeled by massless substitute spring. The effects of the crack location, size and its number and the foundation constants, on the natural frequencies of the beam, are investigated.

Generalized curved beam on elastic foundation solved by transfer matrix method

  • Arici, Marcello;Granata, Michele Fabio
    • Structural Engineering and Mechanics
    • /
    • v.40 no.2
    • /
    • pp.279-295
    • /
    • 2011
  • A solution of space curved bars with generalized Winkler soil found by means of Transfer Matrix Method is presented. Distributed, concentrated loads and imposed strains are applied to the beam as well as rigid or elastic boundaries are considered at the ends. The proposed approach gives the analytical and numerical exact solution for circular beams and rings, loaded in the plane or perpendicular to it. A well-approximated solution can be found for general space curved bars with complex geometry. Elastic foundation is characterized by six parameters of stiffness in different directions: three for rectilinear springs and three for rotational springs. The beam has axial, shear, bending and torsional stiffness. Numerical examples are given in order to solve practical cases of straight and curved foundations. The presented method can be applied to a wide range of problems, including the study of tanks, shells and complex foundation systems. The particular case of box girder distortion can also be studied through the beam on elastic foundation (BEF) analogy.

Generalized beam-column finite element on two-parameter elastic foundation

  • Morfidis, K.;Avramidis, I.E.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.5
    • /
    • pp.519-537
    • /
    • 2005
  • A new generalized Bernoulli/Timoshenko beam-column element on a two-parameter elastic foundation is presented herein. This element is based on the exact solution of the differential equation which describes the deflection of the axially loaded beam resting on a two-parameter elastic foundation, and can take into account shear deformations, semi - rigid connections, and rigid offsets. The equations of equilibrium are formulated for the deformed configuration, so as to account for axial force effects. Apart from the stiffness matrix, load vectors for uniform load and non-uniform temperature variation are also formulated. The efficiency and usefulness of the new element in reinforced concrete or steel structures analysis is demonstrated by two examples.

미분변환법에 의한 탄성 지반상의 열림 균열을 가진 Euler-Bernoulli보의 진동 해석

  • 황기섭;윤종학;유영찬;신영재
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.690-695
    • /
    • 2003
  • The main purpose of this paper is to apply differential transformation method to vibration analysis of Euler-Bernoulli beam with open cracks on elastic foundation. The governing equation of motion of beam with open cracks on elastic foundation is derived. The concept of differential transformation is briefly introduced. The cracks are modeled by massless substitute spring. The effects of the crack location, size and the foundation constants, on the natural frequencies of the beam, are investigated.

  • PDF

ON POSITIVENESS AND CONTRACTIVENESS OF THE INTEGRAL OPERATOR ARISING FROM THE BEAM DEFLECTION PROBLEM ON ELASTIC FOUNDATION

  • CHOI, SUNG WOO
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1225-1240
    • /
    • 2015
  • We provide a complete proof that there are no eigenvalues of the integral operator ${\mathcal{K}}_l$ outside the interval (0, 1/k). ${\mathcal{K}}_l$ arises naturally from the deflection problem of a beam with length 2l resting horizontally on an elastic foundation with spring constant k, while some vertical load is applied to the beam.

Nonlinear analysis of finite beam resting on Winkler foundation with consideration of beam-soil interface resistance effect

  • Zhang, L.;Zhao, M.H.;Xiao, Y.;Ma, B.H.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.5
    • /
    • pp.573-592
    • /
    • 2011
  • Comprehensive and accurate analysis of a finite foundation beam is a challenging engineering problem and an important subject in foundation design. One of the limitation of the traditional Winkler elastic foundation model is that the model neglects the effect of the interface resistance between the beam and the underneath foundation soil. By taking the beam-soil interface resistance into account, a deformation governing differential equation for a finite beam resting on the Winkler elastic foundation is developed. The coupling effect between vertical and horizontal displacements is also considered in the presented method. Using Galerkin method, semi-analytical solutions for vertical and horizontal displacements, axial force, shear force and bending moment of the beam under symmetric loads are presented. The influences of the interface resistance on the behavior of foundation beam are also investigated.

Vibration analysis of micro composite thin beam based on modified couple stress

  • Ehyaei, Javad;Akbarizadeh, M. Reza
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.403-411
    • /
    • 2017
  • In this article, analytical solution for free vibration of micro composite laminated beam on elastic medium based on modified couple stress are presented. The surrounding elastic medium is modeled as the Winkler elastic foundation. The governing equations and boundary conditions are obtained by using the principle of minimum potential energy for EulerBernoulli beam. For investigating the effect of different parameters including material length scale, beam thickness, some numerical results on different cross ply laminated beams such as (90,0,90), (0,90,0), (90,90,90) and (0,0,0) are presented on elastic medium. Free vibration analysis of a simply supported beam is considered utilizing the Fourier series. Also, the fundamental frequency is obtained using the principle of Hamilton for four types of cross ply laminations with hinged-hinged boundary conditions and different beam theories. The fundamental frequency for different thin beam theories are investigated by increasing the slenderness ratio and various foundation coefficients. The results prove that the modified couple stress theory increases the natural frequency under the various foundation for free vibration of composite laminated micro beams.