• Title/Summary/Keyword: Beam Finite Element

Search Result 2,118, Processing Time 0.027 seconds

Nonlinear finite element analysis of ultra-high performance fiber reinforced concrete beams subjected to impact loads

  • Demirtas, Gamze;Caglar, Naci;Sumer, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.81-92
    • /
    • 2022
  • Ultra-high performance fiber reinforced concrete (UHPFRC) is a composite building material with high ductility, fatigue resistance, fracture toughness, durability, and energy absorption capacity. The aim of this study is to develop a nonlinear finite element model that can simulate the response of the UHPFRC beam exposed to impact loads. A nonlinear finite element model was developed in ABAQUS to simulate the real response of UHPFRC beams. The numerical results showed that the model was highly successful to capture the experimental results of selected beams from the literature. A parametric study was carried out to investigate the effects of reinforcement ratio and impact velocity on the response of the UHPFRC beam in terms of midpoint displacement, impact load value, and residual load-carrying capacity. In the parametric study, the nonlinear analysis was performed in two steps for 12 different finite element models. In the first step, dynamic analysis was performed to monitor the response of the UHPFRC beam under impact loads. In the second step, static analysis was conducted to determine the residual load-carrying capacity of the beams. The parametric study has shown that the reinforcement ratio and the impact velocity affect maximum and residual displacement value substantially.

Finite element formulation and analysis of Timoshenko beam excited by transversely fluctuating supports due to a real seismic wave

  • Kim, Yong-Woo;Cha, Seung Chan
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.971-980
    • /
    • 2018
  • Using the concept of quasi-static decomposition and using three-noded isoparametric locking-free element, this article presents a formulation of the finite element method for Timoshenko beam subjected to spatially different time-dependent motions at supports. To verify the validity of the formulation, three fixed-hinged beams excited by the real seismic motions are examined; one is a slender beam, another is a stocky one, and the other is an intermediate one. The numerical results of time histories of motions of the three beams are compared with corresponding analytical solutions. The internal loads such as bending moment and shearing force at a specific time are also compared with analytic solutions. These comparisons show good agreements. The comparisons between static components of the internal loads and the corresponding total internal loads show that the static components predominate in the stocky beam, whereas the dynamic components predominate in the slender one. Thus, the total internal loads of the stocky beam, which is governed by static components, can be predicted simply by static analysis. Careful numerical experiments indicate that the fundamental frequency of a beam can be used as a parameter identifying such a stocky beam.

The mixed finite element for quasi-static and dynamic analysis of viscoelastic circular beams

  • Kadioglu, Fethi;Akoz, A. Yalcin
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.735-752
    • /
    • 2003
  • The quasi-static and dynamic responses of a linear viscoelastic circular beam on Winkler foundation are studied numerically by using the mixed finite element method in transformed Laplace-Carson space. This element VCR12 has 12 independent variables. The solution is obtained in transformed space and Schapery, Dubner, Durbin and Maximum Degree of Precision (MDOP) transform techniques are employed for numerical inversion. The performance of the method is presented by several quasi-static and dynamic example problems.

Finite Element Vibration Analysis of Curved Beam Conveying Fluid of Uniform Velocity (일정속도를 갖는 유체를 포함하는 곡관의 유한요소 진동해석)

  • 서영수;정의봉;오준석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.285-290
    • /
    • 2003
  • A method for the dynamic analysis of curved beam conveying fluid presents. The dynamics of curved beam is based on inextensible theory and the fluid in curved beam has uniform velocity. The equations of motion of curved beam are decoupled by in-plane motion and out-of$.$Plane motion. The solutions of equations are presented by a finite element method and validate by comparing the natural frequency with analytical solution, straight beam theories and Nastran. The influence of fluid velocity on the frequency response function is illustrated and discussed.

  • PDF

Finite element modeling of slab-on-beam concrete bridge superstructures

  • Patrick, Michael D.;Huo, X. Sharon
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.355-369
    • /
    • 2004
  • This paper presents a study of four finite element techniques that can be used to model slabon-beam highway bridges. The feasibility and correctness of each modeling technique are examined by applying them to a prestressed concrete I-beam bridge and a prestressed concrete box-beam bridge. Other issues related to bridge modeling such as torsional constant, support conditions, and quality control check are studied in detail and discussed in the paper. It is found that, under truck loading, the bending stress distribution in a beam section depends on the modeling technique being utilized. It is observed that the behavior of the bridge superstructure can be better represented when accounting for composite behavior between the supporting beams and slab.

Geometrically nonlinear analysis of planar beam and frame structures made of functionally graded material

  • Nguyen, Dinh-Kien;Gan, Buntara S.;Trinh, Thanh-Huong
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.727-743
    • /
    • 2014
  • Geometrically nonlinear analysis of planar beam and frame structures made of functionally graded material (FGM) by using the finite element method is presented. The material property of the structures is assumed to be graded in the thickness direction by a power law distribution. A nonlinear beam element based on Bernoulli beam theory, taking the shift of the neutral axis position into account, is formulated in the context of the co-rotational formulation. The nonlinear equilibrium equations are solved by using the incremental/iterative procedure in a combination with the arc-length control method. Numerical examples show that the formulated element is capable to give accurate results by using just several elements. The influence of the material inhomogeneity in the geometrically nonlinear behavior of the FGM beam and frame structures is examined and highlighted.

Beam finite element model of a vibrate wind blade in large elastic deformation

  • Hamdi, Hedi;Farah, Khaled
    • Wind and Structures
    • /
    • v.26 no.1
    • /
    • pp.25-34
    • /
    • 2018
  • This paper presents a beam finite element model of a vibrate wind blade in large elastic deformation subjected to the aerodynamic, centrifugal, gyroscopic and gravity loads. The gyroscopic loads applied to the blade are induced by her simultaneous vibration and rotation. The proposed beam finite element model is based on a simplex interpolation method and it is mainly intended to the numerical analysis of wind blades vibration in large elastic deformation. For this purpose, the theory of the sheared beams and the finite element method are combined to develop the algebraic equations system governing the three-dimensional motion of blade vibration. The applicability of the theoretical approach is elucidated through an original case study. Also, the static deformation of the used wind blade is assessed by appropriate software using a solid finite element model in order to show the effectiveness of the obtained results. To simulate the nonlinear dynamic response of wind blade, the predictor-corrector Newmark scheme is applied and the stability of numerical process is approved during a large time of blade functioning. Finally, the influence of the modified geometrical stiffness on the amplitudes and frequencies of the wind blade vibration induced by the sinusoidal excitation of gravity is analyzed.

Structural Dynamics Analysis of a Clamp Jointed Complex Ream by Using the Flexibility Influence Coefficient Method (유연도 영향계수법을 이용한 접촉결합부가 있는 복합구조물의 동적 해석)

  • 조재혁;김현욱;최영휴
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.528-533
    • /
    • 1995
  • An analyical method is proposed to construct a clamp jointed structure as an equivalent stiffness matrix element in the finite element modal analysis of a complex beam structure. Static structural analysis was first made for the detail finite element model of the clamp joint. Utilizing the results of this analysis, the equivalent stiffness matrix element was buildup by using the flexibility influence coefficient method and Guyan condensation. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam. And the finite element analysis results were compared to those experimental modal analysis. Comparison shows doog agreement each other Furthermore the effects of normal contact(or clamping) load on the equivalent stiffness matrix was also examined. The equivalent stiffness matrix showed little change in spite of the remakable increase in the contact load on the clamp joint.

  • PDF

Elastic Finite Element Analysis for a Flexible Beam Structure. (유연한 보구조물의 탄성유한요소해석)

  • Jung, Dong-Won;Lim, Sae-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3441-3453
    • /
    • 1996
  • A finite element anlaysis is performed for large deformations of a felxible beam. The total Lagrangian formulation for a general large deformation, which involves finite rotations, is chosen and the exponential map is used to treat finite rotations from the Eulerian point of view. The finite elements results are confirmed for several cases of deformations through comparison to a first order elasticity solution obtained by numerical integration, and the agreement between the two is found to be excellent. For lateral buckling, the point of vanishing determinant of the resulting unsymmetric tangent stiffness is traced to examine its relationship to bifurcation points. It is found that the points of vanishing determinant is not corresponding to bifurcation points for large deformation in general, which suggests that the present unsymmetric tangent stiffness is not an exact first derivative of internal forces with respect to displacement.

The linear-elastic stiffness matrix model analysis of pre-twisted Euler-Bernoulli beam

  • Huang, Ying;Zou, Haoran;Chen, Changhong;Bai, Songlin;Yao, Yao;Keer, Leon M.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.5
    • /
    • pp.617-629
    • /
    • 2019
  • Based on the finite element method of traditional straight Euler-Bernoulli beams and the coupled relations between linear displacement and angular displacement of a pre-twisted Euler-Bernoulli beam, the shape functions and stiffness matrix are deduced. Firstly, the stiffness of pre-twisted Euler-Bernoulli beam is developed based on the traditional straight Euler-Bernoulli beam. Then, a new finite element model is proposed based on the displacement general solution of a pre-twisted Euler-Bernoulli beam. Finally, comparison analyses are made among the proposed Euler-Bernoulli model, the new numerical model based on displacement general solution and the ANSYS solution by Beam188 element based on infinite approach. The results show that developed numerical models are available for the pre-twisted Euler-Bernoulli beam, and which provide more accurate finite element model for the numerical analysis. The effects of pre-twisted angle and flexural stiffness ratio on the mechanical property are investigated.