• Title/Summary/Keyword: Beam Characteristics

Search Result 3,064, Processing Time 0.027 seconds

The modal characteristics of non-uniform multi-span continuous beam bridges

  • Shi, Lu-Ning;Yan, Wei-Ming;He, Hao-Xiang
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.997-1017
    • /
    • 2014
  • According to the structure characteristics of the non-uniform beam bridge, a practical model for calculating the vibration equation of the non-uniform beam bridge is given and the application scope of the model includes not only the beam bridge structure but also the non-uniform beam with added masses and elastic supports. Based on the Bernoulli-Euler beam theory, extending the application of the modal perturbation method and establishment of a semi-analytical method for solving the vibration equation of the non-uniform beam with added masses and elastic supports based is able to be made. In the modal subspace of the uniform beam with the elastic supports, the variable coefficient differential equation that describes the dynamic behavior of the non-uniform beam is converted to nonlinear algebraic equations. Extending the application of the modal perturbation method is suitable for solving the vibration equation of the simply supported and continuous non-uniform beam with its arbitrary added masses and elastic supports. The examples, that are analyzed, demonstrate the high precision and fast convergence speed of the method. Further study of the timesaving method for the dynamic characteristics of symmetrical beam and the symmetry of mode shape should be developed. Eventually, the effects of elastic supports and added masses on dynamic characteristics of the three-span non-uniform beam bridge are reported.

Secondary Electron Emission Characteristics of Functional Layer in AC-PDP

  • Son, Chang-Gil;Han, Young-Gyu;Kim, Yong-Hee;Cho, Byeong-Seong;Hong, Young-Jun;Song, Ki-Baek;Bae, Young-Joo;Kim, In-Tae;Choi, Eun-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.736-739
    • /
    • 2009
  • We have studied that the secondary electron emission characteristics of functional layers which have different kinds of MgO sub-micrometer size powder in AC-PDP. We used cathodoluminescence(CL) and gamma focused ion beam (${\gamma}$-FIB) system for measurement of secondary electron emission characteristics. Also we made 6 inch test panel which applied functional layers for evaluation of discharge characteristics.

  • PDF

Static and Dynamic Instability Characteristics of Thin Plate like Beam with Internal Flaw Subjected to In-plane Harmonic Load

  • R, Rahul.;Datta, P.K.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.19-29
    • /
    • 2013
  • This paper deals with the study of buckling, vibration, and parametric instability characteristics in a damaged cross-ply and angle-ply laminated plate like beam under in-plane harmonic loading, using the finite element approach. Damage is modelled using an anisotropic damage formulation, based on the concept of reduction in stiffness. The effect of damage on free vibration and buckling characteristics of a thin plate like beam has been studied. It has been observed that damage shows a strong orthogonality and in general deteriorates the static and dynamic characteristics. For the harmonic type of loading, analysis was carried out on a thin plate like beam by solving the governing differential equation which is of Mathieu-Hill type, using the method of multiple scales (MMS). The effects of damage and its location on dynamic stability characteristics have been presented. The results indicate that, compared to the undamaged plate like beam, heavily damaged beams show steeper deviations in simple and combination resonance characteristics.

A Study on the Electrom Beam Weldability of 9%Ni Steel (I) - Penetration and Electron Beam Characteristics - (9%Ni 강의 전자빔 용접성에 관한 연구 (I) - 전자빔 특성과 용입 -)

  • 김숙환;강정윤
    • Journal of Welding and Joining
    • /
    • v.15 no.3
    • /
    • pp.79-87
    • /
    • 1997
  • This study was performed to evaluate basic characteristics of electron beam welding process for a 9% Ni steel plate. The principal welding process parameters, such as working distance, accelerating voltage, beam current and welding speed were investigated. The AB (Arata Beam) test method was also applied to characterize beam size and energy density of the electron beam welding process. The electron beam size was found to decrease with the increase of accelerating voltage and the decrease of working distance. So, in case of high voltage (150kV), spot size and energy density of electron beam were revealed to be 0.9mm and $6.5\times10^5W/\textrm{cm}^2$ respectively. The accelerating voltage among the welding parameters was found to be the most important factor governing the penetration depth. When the accelerating voltage of electron beam was low ($\leq$90kV), beam current and welding speed did not affect on the penetration depth significantly. However, in case of high voltage ($\geq$120kV), the depth of penetration increased very sensitively with the increase of beam current and the decrease of welding speed.

  • PDF

DYNAMIC CHARACTERISTICS OF SCALED-DOWN W-BEAMS UNDER IMPACT

  • Hui, T.-Y.-J.;Ruan, H.-H.;Yu, T.-X.
    • International Journal of Automotive Technology
    • /
    • v.4 no.1
    • /
    • pp.31-40
    • /
    • 2003
  • W-beam guardrail system has been the most popular roadside safety device around the world. Through large plastic deformation and corresponding energy dissipation, a W-beam guardrail system contains and re-directs out-of-control vehicles so as to reduce the impact damage on the vehicle occupants and the vehicles themselves. In this paper, our recent experiments on 1 : 3.75 downscaled W-beam and the beam-post system are reported. The static and impact test results on the load characteristics, the global response and the local cross-sectional distortion are reveled. The effects of three different end-boundary conditions for the beam-only testing are examined. It is found that the load characteristics are much dependent on the combined contribution of the local cross-sectional distortion and the end-supporting conditions. The energy Partitioning between the beam and the supporting Posts in the beam-Post-system testing were also examined. The results showed that the energy dissipation partitioning changed with the input impact energy. Finally, a simple mass-spring model is developed to assess the dynamic response of a W-beam guardrail system in response to an impact loading. The model's prediction agrees well with the experimental results.

A study on the structural characteristics and roll behavior of suspension for the section profile of torsion beam (토션빔의 단면형상에 다른 현가계의 구조적 특성과 롤 거동에 관한 연구)

  • 이동찬;변준형
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.195-202
    • /
    • 1999
  • The kinematic and complicance characteristics of torsion beam axle is structurally related to the location and section profile of torsion beam and the span from body mounting point to wheel center. This paper presents the effect of section properties in torsion beam on the structural characteristics and roll behavior of suspension. The structural characteristics is on the maximum stress on the welding area of torsion beam and the roll behavior is on roll steer and roll-camber of suspension which are important for controllability and stability in cornering. Four factors are used for the section design of torsion beam, which are thickness , midline length, are inner radius, and sector half angle . Through the structural and quasi-static analysis made for six torsion beam axle models, it can be noticed that roll steer and the structural durability of suspension are closely related to warping constant and shear center in section properties of torsion beam.

  • PDF

Free Vibration Characteristics of a Composite Beam with Multiple Transverse Open Cracks (다중 크랙이 있는 복합재료 보의 자유진동 특성)

  • 하태완;송오섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.5-14
    • /
    • 1999
  • Free vibration characteristics of a cantilevered laminated composite beam with multiple non-propagating transverse open cracks are investigated. In the present analysis a special ply-angle distribution referred to as asymmetric stiffness configuration inducing the elastic coupling between chord-wise bending and extension is considered. The multiple open cracks are modelled as equivalent rotational springs whose spring constants are calculated based on the fracture mechanics of composite material structures. Governing equations of a composite beam with open cracks are derived via Hamilton's Principle and Timoshenko beam theory encompassing transverse shear and rotary inertia effect is adopted. The effects of various parameters such as the ply angle, fiber volume fraction, crack numbers, crack positions and crack depthes on the free vibration characteristics of the beam with multiple cracks are highlighted. The numerical results show that the existence of the multiple cracks in an anisotropic composite beam affects the free vibration characteristics in a more complex fashion compared with the beam with a single crack.

  • PDF

A Study on the Dynamic Characteristics of a Composite Beam with a Transverse Open Crack (크랙이 존재하는 복합재료 보의 동적 특성 연구)

  • 하태완;송오섭
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.1019-1028
    • /
    • 1999
  • Free vibration characteristics of cantilevered laminated composite beams with a transverse non0propagating open carck are investigated. In the present analysis a special ply-angle distribution referred to as asymmetric stiffness configuration inducing the elastic coupling between chord-wise bending and extension is considered. The open crack is modelled as an equivalent rotational spring whose spring constant is calculated on the basis of fracture mechanics of composite material structures. Governing equations of a composite beam with a open crack are derived via Hamilton's Principle and Timoshenko beam theory encompassing transverse shear and rotary inertia effect. the effects of various parameters such as the ply angle, fiber volume fraction, crack depth, crack position and transverse shear on the free vibration characteristics of the beam with a crack is highlighted. The numerical results show that the natural frequencies obtained from Timoshenko beam theory are always lower than those from Euler beam theory. The presence of intrinsic cracks in anisotropic composite beams modifies the flexibility and in turn free vibration characteristics of the structures. It is revealed that non-destructive crack detection is possible by analyzing the free vibration responses of a cracked beam.

  • PDF

Electro-optical Characteristics of Twisted Nematic(TN)-LCD using New Ion Beam Equipment (새로운 이온빔장치를 사용한 Twisted Nematic-LCD의 전기광학특성)

  • Kim Sang-Hoon;Hwang Jeoung-Yeon;Jang Mi-Hye;Kim Gwi-Yeol;Seo Dae-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.547-551
    • /
    • 2006
  • We studied liquid crystal (LC) alignment with ion beam (IB) on polyimide and electro-optical characteristics of twisted nematic (TN)-liquid crystal display (LCD) on the polyimide surface using obliquely ion beam (IB) exposure with new IB type equipment. A good uniform alignment of the nematic liquid crystal (NLC) alignment with the ion beam exposure on the polyimide surface was observed. In addition, it can be achieved the good EO properties of the ion-beam-aligned TN-LCD on polyimide surface. Also, the EO characteristics of the ion-beam-aligned TN-LCD on a polyimide (PI) surface with ion beam exposure using new type IB equipment is same or more superior than ion-beam-aligned TN-LCD on a polyimide (PI) surface with ion beam exposure using Kaufman-type Ar ion gun.

A study on the Framed Structure with Triple Beam In the Korean Wooden Architecture (한국 목조건축의 삼중량(三重樑) 가구(架構)에 관한 연구)

  • Yang, Jae-Young
    • Journal of architectural history
    • /
    • v.17 no.3
    • /
    • pp.61-80
    • /
    • 2008
  • The purpose of this study is to discover the characteristics and the change of the framed structure with triple beam. 61 existing buildings with the triple beam structure were selected and analyzed extensively. The result of this study could be described in detail like below. The triple beam structure is used in the highly graded and symbolized building like the Buddhist sanctum and the Confucian sanctum. And the triple beam structure was chiefly used in $1600{\sim}1800's$. Generally, 1 Koju-type with Toikan(退間) is applied to the triple beam structure. Despite of the sameness of framed structure, there is a tendency that the rear Toikan(後退間) is used in the Buddhist sanctum and the front Toikan(前退間) is used in the Confucian sanctum. This different application of the Toikan(退間) resulted from the different spatial characteristics which reflect function and grade of the building. The application of Sangjungdori(上中道里, upper purlin) and two Danyeon(短椽, short rafter) is a necessary consequence, because Jungbo(중보, middle beam) is located between Daebo(대보, beam) and Jongbo(종보, small and high located beam) as an additional member of frame. And these are essential characteristics of the framed structure with triple beam. The triple beam structure is formed in a transitional period, as the result from eliminating the inner high-column from the 2 Koju and double beam structure. Though the Daebo is longer, the structure is more stable. But the rate of application of the triple beam structure is low, because it does not exceed the double beam structure in merits. Some of buildings with the triple beam structure has the asymmetrical characteristic in design, which is appeared in the latter period of Joseon Dynasty.

  • PDF