• Title/Summary/Keyword: Beach process

Search Result 80, Processing Time 0.024 seconds

An Experimental Study on the Shoreline Change during Beach Process (해빈과정의 해안선 변화에 관한 실험적 연구)

  • 손창배;이승건
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.55-60
    • /
    • 2000
  • This paper is descried the experimental results of beach process including storm surge and beach recovery. By testing different surge levels and durations, effects of these to shoreline change were evaluated. In addition of beach recovery were investigated experimentally. On the other hand, we proposed the method, which can be applicable to complex hydrograph such as storm surge by modifying equation proposed by Kriebel and Dean. Moreover, applicability of this method is verified by comparing computing result with experiments.

  • PDF

Textural Characters of the Overwash Mark Sediments on the Berm of the Nobong Beach Environment, East Sea of Korea (동해안 해빈(노봉 해빈) 환경의 Overwash Mark 퇴적물의 조직 특성)

  • 박용안;최경식;김수정
    • The Korean Journal of Quaternary Research
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • During the last three years (1997∼2000), a research project of beach dynamic environmental process and dynamic nature of the Nobong Beach, East Sea of Korea has been carried out for a better understanding of beach cycle (winter and summer). In fact, however, this paper deals with a particular feature of beach dynamics, that is, overwash process of overwash water and its sediments. The overwash mark sediments (OMS) are analyzed to understand various textural characters.

  • PDF

Grand Circulation Process of Beach Cusp and its Seasonal Variation at the Mang-Bang Beach from the Perspective of Trapped Mode Edge Waves as the Driving Mechanism of Beach Cusp Formation (맹방해안에서 관측되는 Beach Cusp의 일 년에 걸친 대순환 과정과 계절별 특성 - 여러 생성기작 중 포획모드 Edge Waves를 중심으로)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.265-277
    • /
    • 2019
  • Using the measured data of waves and shore-line, we reviewed the grand circulation process and seasonal variation of beach cusp at the Mang-Bang beach from the perspective of trapped mode Edge waves known as the driving mechanism of beach cusp. In order to track the temporal and spatial variation trends of beach cusp, we quantify the beach cusp in terms of its wave length and amplitude detected by threshold crossing method. In doing so, we also utilize the spectral analysis method and its associated spectral mean sand wave number. From repeated period of convergence and ensuing splitting of sand waves detected from the yearly time series of spectral mean sand wave number of beach cusp, it is shown that the grand circulation process of beach cusp at Mang-Bang beach are occurring twice from 2017. 4. 26 to 2018. 4. 20. For the case of beach area, it increased by $14,142m^2$ during this period, and the shore-line advanced by 18 m at the northen and southern parts of the Mang-Bang beach whereas the shore-line advanced by 2.4 m at the central parts of Mang-Bang beach. It is also worthy of note that the beach area rapidly increased by $30,345m^2$ from 2017.11.26. to 2017.12.22. which can be attributed to the nature of coming waves. During this period, mild swells of long period were prevailing, and their angle of attack were next to zero. These characteristics of waves imply that the main transport mode of sediment would be the cross-shore. Considering the facts that self-healing capacity of natural beaches is realized via the cross-shore sediment once temporarily eroded. it can be easily deduced that the sediment carried by the boundary layer streaming toward the shore under mild swells which normally incident toward the Mang-Bang beach makes the beach area rapidly increase from 2017.11.26. to 2017.12.22.

The Analysis for the Causes of Beach Erosion on Jeonchon-Najung Beach on the East Coast of Korea (전촌-나정해안의 해안침식 원인분석)

  • Yoo, Hyung-Seok;Kim, Kyu-Han;Joung, Eui-Jin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.6
    • /
    • pp.611-620
    • /
    • 2008
  • The process of sediment transport has a very complex mechanism due to waves, currents and bottom topography changes. Usually, beach erosion occurs from various causes such as non-equilibrium sediment transport condition, construction of seawall and rip currents. Therefore, when we try to reduce and develop countermeasures for beach erosion, we have to know the main mode and direction of sediment transport that causes beach erosion. In this study, the process of sediment transport on Jeonchon-Najung beach and main causes of beach erosion have been studied. Field investigation data, aerial photos and the results of numerical model test were used in the analysis. As a result, it was realized that the main causes of beach erosion at Jeonchon-Najung beach was due to the construction of fishery harbors and a seawall.

Numerical Analysis of the Hydraulic Characteristics of a Boundary Layer Streaming over Beach Cusps Surf-Zone Using LES and One Equation Dynamic Smagorinsky Turbulence Model (LES와 One Equation Dynamic Smagorinsky 난류모형을 이용한 Beach Cusps 쇄파역에서의 경계층 Streaming 수치해석)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.55-68
    • /
    • 2020
  • In order to investigate the hydraulic characteristics of a boundary layer streaming over the beach cusps appeared in swells prevailing mild seas, we numerically simulated the shoaling process of Edge waves over the beach cusp. Synchronous Edge waves known to sustain the beach cusps could successfully be duplicated by generating two obliquely colliding Edge waves in front of beach cusps. The amplitude AB and length LB of Beach Cusp were elected to be 1.25 m and 18 m, respectively based on the measured data along the Mang-Bang beach. Numerical results show that boundary layer streaming was formed at every phase of shoaling process without exception, and the maximum boundary layer streaming was observed to occur at the crest of sand bar. In RUN 1 where the shortest waves were deployed, the maximum boundary layer streaming was observed to be around 0.32 m/s, which far exceeds the amplitude of free stream by two times. It is also noted that the maximum boundary layer streaming mentioned above greatly differs from the analytical solution by Longuet-Higgins (1957) based on wave Reynolds stress. In doing so, we also identify the recovery procedure of natural beaches in swells prevailing mild seas, which can be summarized such as: as the infra-gravity waves formed in swells by the resonance wave-wave interaction arrives near the breaking line, the sediments ascending near the free surface by the Phase II waves orbital motion were carried toward the pinnacle of foreshore by the shoreward flow commenced at the steep front of breaking waves, and were deposited near the pinnacle of foreshore due to the infiltration.

Preparation of Gold Nanoisland Arrays from Layer-by-Layer Assembled Nanoparticle Multilayer Films

  • Choi, Hyung-Y.;Guerrero, Michael S.;Aquino, Michael;Kwon, Chu-Hee;Shon, Young-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.291-297
    • /
    • 2010
  • This article introduces a facile nanoparticle self-assembly/annealing method for the preparation of nanoisland films. First, nanoparticle-polymer multilayer films are prepared with layer-by-layer assembly. Nanoparticle multilayer films are then annealed at $~500^{\circ}C$ in air to evaporate organic matters from the films. During the annealing process, the nanoparticles on the solid surface undergo nucleation and coalescence, resulting in the formation of nanostructured gold island arrays. By controlling the overall thickness (number of layers) of nanoparticle multilayer films, nanoisland films with various island density and different average sizes are obtained. The surface property of gold nanoisland films is further controlled by the self-assembly of alkanethiols, which results in an increased surface hydrophobicity of the films. The structure and characteristics of these nanoisland film arrays are found to be quite comparable to those of nanoisland films prepared by vacuum evaporation method. However, this self-assembly/annealing protocol is simple and requires only common laboratory supplies and equipment for the entire preparation process.

Numerical Simulation of Beach Profile Changes (해빈 종단면 변형의 수치모의)

  • Cheon, Se-Hyeon;Ahn, Kyung-Mo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.1
    • /
    • pp.101-109
    • /
    • 2008
  • Several numerical models for predicting beach profile changes have been developed by many researchers. Many of the earlier models are known to simulate the erosional profiles with the formation of offshore bar. However, most of the models don't have proper mechanism to incorporate the recovery process of the eroded profiles after a storm and can not simulate the beach accretion with acceptable accuracy. In order to overcome these shortcomings, we propose a new numerical model which has new features to simulate the accretional phase of beach recovery process after storm including such as redistribution of suspended sand particles near the breaking point. The simulation results of the proposed model were compared with LWT (Large Wave Tank) experiments performed at CRIEPI (Central Research Institute of Electric Power Industry in Japan) and CE (the Us Army Corps of Engineers) and it was shown to have performed better compared to SBEACH (Storm-induced BEAch CHange).

Morphological changes of the beach and dune of The Taeanhaean National Park using VRS/RTK GPS - a case of Hakampo and Anmyeon beach - (VRS/RTK GPS 측량을 통한 태안해안국립공원 해빈과 해안사구의 지형변화 - 학암포와 안면 해안을 사례로 -)

  • PARK, Jung Won;OH, Sun Kwan;SEO, Seung Jik;SEO, Jong Cheol
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.2
    • /
    • pp.161-172
    • /
    • 2012
  • The Taeanhaean National Park is located on the middle of the west coast of Korean peninsula. Due to the relatively high wave energy, large tidal range which is about 7m, and extremely complex coastal line, various coastal land-forms such as mud-flats, sand beaches, sand dunes, sea cliffs etc. are well distributed in this area, and thus various coastal ecosystems are well preserved. However, because of reckless sand diggings and construction of artificial structures in the coastal zone, the natural flowing and exchange of coastal deposits were disturbed and the erosion in the beach and the dune has been seriously accelerated. To understand of the causes of these problems, we tried three times periodical measuring with VRS/RTK GPS instrument at the Hakampo and Anmyeon beach. According to seasonal changes of the coast-line, beach area and cross-section of study sites, generally erosion process was dominated in the summer and deposition process was followed after summer.

Terrestrial LiDAR Measurements and Analysis of Topographical Changes on Malipo Beach (지상 LiDAR를 이용한 만리포 해변 정밀 지형측량 및 지형 변화 분석)

  • Shim, Jae-Seol;Kim, Jin-Ah;Park, Han-San;Kim, Seon-Jeong
    • Ocean and Polar Research
    • /
    • v.32 no.1
    • /
    • pp.73-84
    • /
    • 2010
  • A terrestrial LiDAR was used to acquire precise and high-resolution topographical information of Malipo beach, Korea. Terrestrial LiDAR and RTK-DGPS (VRS) were mounted on top of a survey vehicle and used to scan 20 times stop-and-go method with 250 m spacing intervals at ebb tides. In total, 7 measurements were made periodically from 2008 to 2009 and after each beach replenishment event. We carried out GIS-based 3D spatial analysis such as slope and volume calculations in order to assess topographical changes over time. In relation to beach replenishment, comparative analysis of each volume change revealed them to be similar. This result indicates that the terrestrial LiDAR measurements are accurate and can be used to analyze temporal topographical changes. In conclusion, the methodology employed in this study can be used efficiently to exercise coastal management through monitoring and analyzing beach process such as erosion and deposition.

Correlation Analysis between Beach Width and Wave Data on the East Coast of South Korea (동해안 주요 해빈의 해빈폭과 파랑의 상관성 분석)

  • Oh, Jung-Eun;Jeong, Weon-Mu;Kim, Ki-Hyun;Kang, Tae-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.2
    • /
    • pp.73-87
    • /
    • 2019
  • Ocean waves are the driving force for the sediment transport and the beach process. However, wave actions are nonlinear and non-stationary, and the response of the beach is inconsistent in terms of reaction rate and magnitude. Therefore, the beach process is difficult to predict accurately. The purpose of this study is to identify the correlations between the shoreline change and ocean waves observed in the east coast of Korea. The relation of the beach width obtained from video monitoring at five sandy beaches and the wave data obtained from nearby wave monitoring at three points was analyzed. Although the correlations estimated over the whole data sets was not significant, the correlations estimated based on the seasonal period or wave conditions provided more noteworthy information. When the non-exceedance probability of the wave height was greater than 0.99, the wave period and beach width showed strong negative correlations. In case the non-exceedance probability of the wave period was greater than 0.99, the wave height and beach width showed strong negative correlations as well. Furthermore, the erosion rate of the beach width increased when the primary wave direction was close to normal to the coastline. Little significant seasonal or monthly change was found between the beach width and the wave, but it was greatly affected by intensive events such as typhoons. Thus, it is necessary to analyze in detail the wave height or period level explaining the change of beach width for more relevant and practical information.