DOI QR코드

DOI QR Code

Correlation Analysis between Beach Width and Wave Data on the East Coast of South Korea

동해안 주요 해빈의 해빈폭과 파랑의 상관성 분석

  • Oh, Jung-Eun (Coastal and Ocean Engineering Division, Korea Institute of Ocean Science and Technology) ;
  • Jeong, Weon-Mu (Coastal and Ocean Engineering Division, Korea Institute of Ocean Science and Technology) ;
  • Kim, Ki-Hyun (GeoSystem Research Corporation) ;
  • Kang, Tae-Sun (GeoSystem Research Corporation)
  • 오정은 (한국해양과학기술원 해양공학연구본부) ;
  • 정원무 (한국해양과학기술원 해양공학연구본부) ;
  • 김기현 ((주)지오시스템리서치) ;
  • 강태순 ((주)지오시스템리서치)
  • Received : 2019.02.25
  • Accepted : 2019.04.18
  • Published : 2019.04.30

Abstract

Ocean waves are the driving force for the sediment transport and the beach process. However, wave actions are nonlinear and non-stationary, and the response of the beach is inconsistent in terms of reaction rate and magnitude. Therefore, the beach process is difficult to predict accurately. The purpose of this study is to identify the correlations between the shoreline change and ocean waves observed in the east coast of Korea. The relation of the beach width obtained from video monitoring at five sandy beaches and the wave data obtained from nearby wave monitoring at three points was analyzed. Although the correlations estimated over the whole data sets was not significant, the correlations estimated based on the seasonal period or wave conditions provided more noteworthy information. When the non-exceedance probability of the wave height was greater than 0.99, the wave period and beach width showed strong negative correlations. In case the non-exceedance probability of the wave period was greater than 0.99, the wave height and beach width showed strong negative correlations as well. Furthermore, the erosion rate of the beach width increased when the primary wave direction was close to normal to the coastline. Little significant seasonal or monthly change was found between the beach width and the wave, but it was greatly affected by intensive events such as typhoons. Thus, it is necessary to analyze in detail the wave height or period level explaining the change of beach width for more relevant and practical information.

파랑의 작용에 의해 유사가 이동되어 연안의 침식 퇴적이 일어나지만 상당히 비선형적이고 비정상적인 과정이므로, 파랑과 침식 퇴적의 상관성을 밝히고 예측하기는 쉽지 않다. 본 연구는 동해안에서 비디오 모니터링으로 얻은 5개 지점의 해빈폭 자료와 인근의 3개 지점의 파랑 모니터링 자료를 연계하여 상관성을 분석하였다. 전체 자료에 대한 상관분석에서는 유의미한 상관성이 없었지만, 기간 및 파랑 조건에 따른 상관분석에서는 주목할 만한 결과들이 제시되었다. 파고의 비초과확률이 약 99% 이상인 경우에는 주기와 해빈폭 변화 사이에 강한 음의 상관성이 있었으며, 주기의 비초과확률이 약 99% 이상인 경우에는 파고와 해빈폭 변화 사이에 강한 음의 상관성이 있었다. 주파향이 해안선 직각 방향과 인접한 경우, 주파향으로 입사하는 파랑에 대해 해빈폭이 확연히 감소하였다. 해빈폭과 파랑 사이에 뚜렷한 계절적 상관성이 나타나지는 않았으나, 태풍과 같은 특정 사건의 영향을 크게 받는 것으로 나타났다. 이러한 연구 결과의 실제 현장 적용을 위해서는 이와 같은 조건에 따른 상관 분석을 상세히 하여 해빈폭 변화 경향의 기준이 되는 파랑에 대해 더욱 정확한 정보를 얻을 필요가 있다.

Keywords

References

  1. Anderson, T.R., Frazer, L.N. and Fletcher, C.H. (2010). Transient and persistent shoreline change from a storm. Geophys. Res. Lett. 37.
  2. Burvingt, O., Masselink, G., Russell, P. and Scott, T. (2017). Classification of beach response to extreme storms. Geomorphology, 295, 722-737. https://doi.org/10.1016/j.geomorph.2017.07.022
  3. Cho, H.Y., Jeong, S.T., Ko, D.H. and Son, K.-P. (2014). Efficient outlier detection of the water temperature monitoring data. Journal of Korean Society of Coastal and Ocean Engineers 26(5), 285-291 (in Korean). https://doi.org/10.9765/KSCOE.2014.26.5.285
  4. Cooper, J.A.G. and Pilkey, O.H. (2004). Sea-level rise and shoreline retreat: Time to abandon the Bruun Rule. Glob. Planet. Chang., 43, 157-171. https://doi.org/10.1016/j.gloplacha.2004.07.001
  5. Davidson, M.A., Splinter, K.D. and Turner, I.L. (2013). A simple equilibrium model for predicting shoreline change. Coast. Eng., 73, 191-202. https://doi.org/10.1016/j.coastaleng.2012.11.002
  6. Kang, T.S., Nam, S.Y., Kim, M.H. and Baek, K.K. (2007). Study on Characteristics of Coastal Erosion Status Using Real-time Video Monitoring Technique. Magazine of Korean Society of Hazard Mitigation, 7(1), 47-56 (in Korean).
  7. Kang, T.S., Kim, J.B., Kim, G.Y., Kim, J.K. and Hwang, C.S. (2017). Variation Characteristics of Haeundae Beach using Video Image. J. Ocean Eng. Technol., 31(1), 60-68 (in Korean). https://doi.org/10.5574/KSOE.2017.31.1.060
  8. Kim, T.R. and Kim, D.S. (2014). Benefits of Camera Monitoring System in Studying on Coastal Dune Erosion by Typhoon. Journal of the Korean Geomorphological Association, 21(4) 41-52 (in Korean). https://doi.org/10.16968/JKGA.21.4.3
  9. Kim, T.R. (2016). South/Jeju Coast Beach Erosion Analysis Using Camera Monitoring Data. Journal of the Korean Geomorphological Association, 23(1), 129-140 (in Korean). https://doi.org/10.16968/JKGA.23.1.10
  10. Loureiro, C., Ferreira, O. and Cooper, J.A.G. (2012). Geologically constrained morphological variability and boundary effects on embayed beaches. Mar. Geol. 329-331:1-15. https://doi.org/10.1016/j.margeo.2012.09.010
  11. Masselink, G., Scott, T., Davidson, M., Russell, P. and Conley, D. (2015). The extreme 2013/2014 winter storms: hydrodynamic forcing and coastal response along the southwest coast of England. Earth Surf. Process. Landf. 41, 378-391. https://doi.org/10.1002/esp.3836
  12. Ministry of Oceans and Fisheries (2015). 2015 Coastal erosion monitoring. 634p (in Korean).
  13. Ministry of Oceans and Fisheries (2016). 2016 Coastal erosion monitoring. 664p (in Korean).
  14. Ministry of Oceans and Fisheries (2017). 2017 Coastal erosion monitoring. 784p (in Korean).
  15. Ministry of Oceans and Fisheries (2018). 2018 Coastal erosion monitoring. 796p (in Korean).
  16. Munera, S., Osorio, A.F. and Velasquez, J.D. (2014). Data-based methods and algorithms for the analysis of sandbar behavior with exogenous variables. Comput. Geosci., 72, 134-146. https://doi.org/10.1016/j.cageo.2014.07.009
  17. Pearson, K. (1895). Notes on regression and inheritance in the case of two parents. Proc. R Soc. Lond., 58, 240-242. https://doi.org/10.1098/rspl.1895.0041
  18. Scott, T., Masselink, G., O'Hare, T., Saulter, A., Poate, T., Russell, P., Davidson, M. and Conley, D. (2016). The extreme 2013/2014 winter storms: beach recovery along the southwest coast of England. Mar. Geol., 382, 224-241. https://doi.org/10.1016/j.margeo.2016.10.011
  19. Splinter, K.D., Carley, J.T., Golshani, A. and Tomlinson, R. (2014). A relationship to describe the cumulative impact of storm clusters on beach erosion. Coast. Eng., 83, 49-55. https://doi.org/10.1016/j.coastaleng.2013.10.001
  20. Uda, T. (2017). Advanced Series on Ocean Engineering: Volume 43, Japan's Beach Erosion Reality and Future Measures, 2nd Edition.
  21. Wright, L.D. and Short, A.D. (1984). Morphodynamic variability of surf zones and beaches: a synthesis. Mar. Geol., 56(1-4), 93-118. https://doi.org/10.1016/0025-3227(84)90008-2
  22. Yates, M.L., Guza, R.T. and O'Reilly, W.C. (2009). Equilibrium shoreline response: Observations and modeling. Geophys. Res., 114.