• Title/Summary/Keyword: Be

Search Result 447,295, Processing Time 0.336 seconds

Application of satellite remote sensing-based vegetation index for evaluation of transplanted tree status (이식수목의 현황 평가를 위한 위성영상 기반 원격탐사 식생지수 적용 연구)

  • Mi Na Choi;Do-Hun Lee;Moon-Jeong Jang;Dong Ju Kim;Sun Mi Lee;Yoon Jung Moon;Yong Sung Kwon
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.1
    • /
    • pp.18-30
    • /
    • 2023
  • Forest destruction is an inevitable result of the development processes. According to the environmental impact assessment, over 10% of the destroyed trees need to be recycled and transplanted to minimize the impact of forest destruction. However, the rate of successful transplantation is low, leading to a high rate of tree death. This is attributable to a lack of consideration for environmental factors when choosing a temporary site for transplantation and inadequate management. To monitor transplanted trees, a field survey is essential; however, the spatio-temporal aspect is limited. This study evaluated the applicability of remote sensing for the effective monitoring of transplanted trees. Vegetation indices based on satellite remote sensing were derived to detect time-series changes in the status of the transplanted trees at three temporary transplantation sites. The mortality rate and vitality of transplanted trees before and after the transplant have a similar tendency to the changes in the vegetation indicators. The findings of this study showed that vegetation indices increased after transplantation of trees and decreased as the death rate increased and vitality decreased over time. This study presents a method for assessing newly transplanted trees using satellite images. The approach of utilizing satellite photos and the vegetation index is expected to detect changes in trees that have been transplanted across the country and help to manage tree transplantation for the environmental impact assessment.

Correlation between litter decomposition rate of Quercus mongolica leaf and microclimatic factors at Mt. Jeombongsan (점봉산 신갈나무 낙엽의 분해율과 미기상요인과의 상관관계 분석)

  • Ho-Yeon Won;Young-Sang Lee;Jae-Seok Lee;Il-Hwan Lee
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.455-463
    • /
    • 2022
  • To understand functional changes of forest ecosystems due to climate change, correlation between decomposition rate of leaf litter, an important function of forest ecosystems, and microclimatic factors was analyzed. After 48 months elapsed, percent remaining weight of Quercus mongolica leaf litter was 27.1% in the east aspect and 37.0% in the west aspects. Decay constant of Q. mongolica leaf litter was 0.33 in the east aspect and 0.25 in the west aspect after 48 months elapsed. Initial C/N ratio of Q. mongolica leaf litter was 38.5. After 48 months elapsed, C/N ratio of decomposing Q. mongolica leaf litter decreased to 13.43 in the east aspect and 16.72 in the west aspect. Average air temperature and soil temperature during the investigation period of the research site were 8.2±9.0 and 9.1±9.3 in the east and 8.5±7.4 and 9.3±7.3℃ in the west aspect, respectively, with the west aspect showing higher air and soil temperatures. Soil moisture showed no significant difference between east and west aspects (average soil moisture: 19.4±11.0% vs. 20.5±5.7%). However, as a result of analyzing the correlation between decomposition rate and microclimatic factors, it was found that the decomposition rate and soil moisture has a positive correlation(r=0.426) in the east aspect but not in the west aspect. Our study shows that the correlation between decomposition rate and microclimatic factors can be significantly different depending on the direction of the aspect.

Structural and functional characteristics of rock-boring clam Barnea manilensis (암석을 천공하는 돌맛조개(Barnea manilensis)의 구조 및 기능)

  • Ji Yeong Kim;Yun Jeon Ahn;Tae Jin Kim;Seung Min Won;Seung Won Lee;Jongwon Song;Jeongeun Bak
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.413-422
    • /
    • 2022
  • Barnea manilensis is a bivalve which bores soft rocks, such as, limestone or mudstone in the low intertidal zone. They make burrows which have narrow entrances and wide interiors and live in these burrows for a lifetime. In this study, the morphology and the microstructure of the valve of rock-boring clam B. manilensis were observed using a stereoscopic microscope and FE-SEM, respectively. The chemical composition of specific part of the valve was assessed by energy dispersive X-ray spectroscopy (EDS) analysis. 3D modeling and structural dynamic analysis were used to simulate the boring behavior of B. manilensis. Microscopy results showed that the valve was asymmetric with plow-like spikes which were located on the anterior surface of the valve and were distributed in a specific direction. The anterior parts of the valve were thicker than the posterior parts. EDS results indicated that the valve mainly consisted of calcium carbonate, while metal elements, such as, Al, Si, Mn, Fe, and Mg were detected on the outer surface of the anterior spikes. It was assumed that the metal elements increased the strength of the valve, thus helping the B. manilensis to bore sediment. The simulation showed that spikes located on the anterior part of the valve received a load at all angles. It was suggested that the anterior part of the shell received the load while drilling rocks. The boring mechanism using the amorphous valve of B. manilensis is expected to be used as basic data to devise an efficient drilling mechanism.

Influence of a chemical additive on the reduction of highly concentrated ammonium nitrogen(NH4+-N) in pig wastewater (양돈 폐수로부터 고농도 암모니아성 질소의 감소를 위한 화학적 첨가제의 영향)

  • Su Ho Bae;Eun Kim;Keon Sang Ryoo
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.267-274
    • /
    • 2022
  • Excess nitrogen (N) flowing from livestock manure to water systems poses a serious threat to the natural environment. Thus, livestock wastewater management has recently drawn attention to this related field. This study first attempted to obtain the optimal conditions for the further volatilization of NH3 gas generated from pig wastewater by adjusting the amount of injected magnesia (MgO). At 0.8 wt.% of MgO (by pig wastewater weight), the volatility rate of NH3 increased to 75.5% after a day of aeration compared to untreated samples (pig wastewater itself). This phenomenon was attributed to increases in the pH of pig wastewater as MgO dissolved in it, increasing the volatilization efficiency of NH3. The initial pH of pig wastewater was 8.4, and the pH was 9.2 when MgO was added up to 0.8 wt.%. Second, the residual ammonia nitrogen (NH4+-N) in pig wastewater was removed by precipitation in the form of struvite (NH4MgPO4·6H2O) by adjusting the pH after adding MgO and H3PO4. Struvite produced in the pig wastewater was identified by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) analysis. White precipitates began to form at pH 6, and the higher the pH, the lower the concentration of NH4+-N in pig wastewater. Of the total 86.1% of NH4+-N removed, 62.4% was achieved at pH 6, which was the highest removal rate. Furthermore, how struvite changes with pH was investigated. Under conditions of pH 11 or higher, the synthesized struvite was completely decomposed. The yield of struvite in the precipitate was determined to be between 68% and 84% through a variety of analyses.

Calculation of Damage to Whole Crop Corn Yield by Abnormal Climate Using Machine Learning (기계학습모델을 이용한 이상기상에 따른 사일리지용 옥수수 생산량에 미치는 피해 산정)

  • Ji Yung Kim;Jae Seong Choi;Hyun Wook Jo;Moonju Kim;Byong Wan Kim;Kyung Il Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.1
    • /
    • pp.11-21
    • /
    • 2023
  • This study was conducted to estimate the damage of Whole Crop Corn (WCC; Zea Mays L.) according to abnormal climate using machine learning as the Representative Concentration Pathway (RCP) 4.5 and present the damage through mapping. The collected WCC data was 3,232. The climate data was collected from the Korea Meteorological Administration's meteorological data open portal. The machine learning model used DeepCrossing. The damage was calculated using climate data from the automated synoptic observing system (ASOS, 95 sites) by machine learning. The calculation of damage was the difference between the dry matter yield (DMY)normal and DMYabnormal. The normal climate was set as the 40-year of climate data according to the year of WCC data (1978-2017). The level of abnormal climate by temperature and precipitation was set as RCP 4.5 standard. The DMYnormal ranged from 13,845-19,347 kg/ha. The damage of WCC which was differed depending on the region and level of abnormal climate where abnormal temperature and precipitation occurred. The damage of abnormal temperature in 2050 and 2100 ranged from -263 to 360 and -1,023 to 92 kg/ha, respectively. The damage of abnormal precipitation in 2050 and 2100 was ranged from -17 to 2 and -12 to 2 kg/ha, respectively. The maximum damage was 360 kg/ha that the abnormal temperature in 2050. As the average monthly temperature increases, the DMY of WCC tends to increase. The damage calculated through the RCP 4.5 standard was presented as a mapping using QGIS. Although this study applied the scenario in which greenhouse gas reduction was carried out, additional research needs to be conducted applying an RCP scenario in which greenhouse gas reduction is not performed.

Study on Forage Cropping System Using Summer Forage Crops with Italian Ryegrass at Paddy Land of Gangjin Region in South Korea (남부지역 논에서 이탈리안 라이그라스와 하계 사료작물을 연계한 작부체계에 관한 연구)

  • Jeong Sung Jung;Se Young Lee;Mirae Oh;Hyung Soo Park;Ana Yun;Ki Choon Choi
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.1
    • /
    • pp.35-41
    • /
    • 2023
  • This experiment was carried out to examine double cropping system using Italian ryegrass (IRG) 'Kowinearly', whole crop rice 'Yeongwoo' and barnyard millet 'Jeju native' during the Oct. 2020 to Oct. 2022. Three kinds of forage crops were cultivated at paddy field in Livestock Institute, Jeollanamdo Agricultural Research and Extension Services, Jeollanamdo, South Korea. Whole crop rice (WCR) was sown in late May and barnyard millet (BM) sown early June each year after harvesting IRG. We examined dry matter yield and feed value of forage crops depending on harvest time of forage crops during the experimental period. The plant height in heading stage of IRG ranged from 108 to 112cm and dry matter yield ranged from 6,783 to 11,530 kg ha-1. The crude protein (CP) of IRG ranged from 6.0 to 8.44%, acid detergent fiber (ADF) ranged from 55.6 to 60.2% and neutral detergent fiber (NDF) ranged from 32.58 to 36.7%, The dry matter yield of WCR increased as the harvest stage was delayed (14,310 kg ha-1 in milk, 16,167 kg ha-1 in yellow ripen, and 18,891 kg ha-1 in mature). Similar to results of dry matter yield of WCR, dry matter yield of BM increased as the harvest stage was delayed (11,194 kg ha-1 in late heading. and 14,308 kg ha-1 in mature), However nutrient content of WCR and BM showed a decreasing trend. As shown in above results, the productivity of WCR after harvesting IRG was shown to be high at paddy field in the southern region. However, BM also was appeared to have potential as summer forage crops.

Voltammetric Sensor Incorporated with Conductive Polymer, Tyrosinase, and Ionic Liquid Electrolyte for Bisphenol F (전도성고분자, 티로시나아제 효소 및 이온성 액체 전해질을 융합한 전압전류법 기반의 비스페놀F 검출 센서)

  • Sung Eun Ji;Sang Hyuk Lee;Hye Jin Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.258-263
    • /
    • 2023
  • In this study, conductive polymers and the enzyme tyrosinase (Tyr) were deposited on the surface of a screen printed carbon electrode (SPCE), which can be fabricated as a disposable sensor chip, and applied to the detection of bisphenol F (BPF), an endocrine disruptor with proven links to male diseases and thyroid disorders, using electrochemical methods. On the surface of the SPCE working electrode, which was negatively charged by oxygen plasma treatment, a positively charged conductive polymer, poly(diallyldimethyl ammonium chloride) (PDDA), a negatively charged polymer compound, poly(sodium 4-styrenesulfonate) (PSS), and another layer of PDDA were layered by electrostatic attraction in the order of PDDA, PSS, and finally PDDA. Then, a layer of Tyr, which was negatively charged due to pH adjustment to 7.0, was added to create a PDDA-PSS-PDDA-Tyr sensor for BPF. When the electrode sensor is exposed to a BPF solution, which is the substrate and target analyte, 4,4'-methylenebis(cyclohexa-3,5-diene-1,2-dione) is generated by an oxidation reaction with the Tyr enzyme on the electrode surface. The reduction process of the product at 0.1 V (vs. Ag/AgCl) generating 4,4'-methylenebis(benzene-1,2-diol) was measured using cyclic and differential pulse voltammetries, resulting in a change in the peak current with respect to the concentration of BPF. In addition, we compared the detection performance of BPF using an ionic liquid electrolyte as an alternative to phosphate-buffered saline, which has been used in many previous sensing studies. Furthermore, the selectivity of bisphenol S, which acts as an interfering substance with a similar structure to BPF, was investigated. Finally, we demonstrated the practical applicability of the sensor by applying it to analyze the concentration of BPF in real samples prepared in the laboratory.

The Determinants of Digital Trust of Senior Consumers in the Era of Digital Transformation (디지털 트랜스포메이션 시대, 시니어 소비자의 디지털 소비여건 신뢰 형성 요인 연구)

  • Mina Jun;Miyea Kim;Jeongsoo Han
    • Knowledge Management Research
    • /
    • v.23 no.4
    • /
    • pp.91-112
    • /
    • 2022
  • In order to improve the quality of consumption in senior generation, it is necessary to build trust in the digital consumption environment. However, there are limitations from previous researches on consumption in the digital environment that has mainly focused on Millennial and Z generations. Therefore, this study aims to examine the antecedents of digital consumption trust and to explore the market segments of senior generation created by the dynamics of these antecedents. In addition, in order to provide practical implications, we investigate the difference in the level of perceived digital consumption trust using segmentation. This study, therefore, used 2021 Korea's consumer life index data conducted by the Korea Consumer Agency for general consumers, and only consumer data of 60s and older are extracted for the analysis. As a result, we confirm from the main results that the three antecedents, consumer competency, perceived corporate responsibility, and local community's problem-solving environment, are significant in building the digital consumption trust in the senior generation. It is academically significant in this aspect to look at approaches to improve senior customers' trust in digital consumption circumstances by dividing generations because generations exhibit varying levels of understanding of online consumption or digital consumption conditions. It is academically significant in this aspect to look at approaches to improve senior customers' trust in digital consumption circumstances by dividing generations because generations exhibit varying levels of understanding of online consumption or digital consumption conditions. Additionally, it is proposed as a practical implication that it should be managed so that significant improvements of customers, businesses, and regional public institutions are developed in order to allow the senior consumers to prepare trusted digital consumption circumstances.

The Validity Test of Statistical Matching Simulation Using the Data of Korea Venture Firms and Korea Innovation Survey (벤처기업정밀실태조사와 한국기업혁신조사 데이터를 활용한 통계적 매칭의 타당성 검증)

  • An, Kyungmin;Lee, Young-Chan
    • Knowledge Management Research
    • /
    • v.24 no.1
    • /
    • pp.245-271
    • /
    • 2023
  • The change to the data economy requires a new analysis beyond ordinary research in the management field. Data matching refers to a technique or processing method that combines data sets collected from different samples with the same population. In this study, statistical matching was performed using random hotdeck and Mahalanobis distance functions using 2020 Survey of Korea Venture Firms and 2020 Korea Innovation Survey datas. Among the variables used for statistical matching simulation, the industry and the number of workers were set to be completely consistent, and region, business power, listed market, and sales were set as common variables. Simulation verification was confirmed by mean test and kernel density. As a result of the analysis, it was confirmed that statistical matching was appropriate because there was a difference in the average test, but a similar pattern was shown in the kernel density. This result attempted to expand the spectrum of the research method by experimenting with a data matching research methodology that has not been sufficiently attempted in the management field, and suggests implications in terms of data utilization and diversity.

Evaluation for applicability of river depth measurement method depending on vegetation effect using drone-based spatial-temporal hyperspectral image (드론기반 시공간 초분광영상을 활용한 식생유무에 따른 하천 수심산정 기법 적용성 검토)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.235-243
    • /
    • 2023
  • Due to the revision of the River Act and the enactment of the Act on the Investigation, Planning, and Management of Water Resources, a regular bed change survey has become mandatory and a system is being prepared such that local governments can manage water resources in a planned manner. Since the topography of a bed cannot be measured directly, it is indirectly measured via contact-type depth measurements such as level survey or using an echo sounder, which features a low spatial resolution and does not allow continuous surveying owing to constraints in data acquisition. Therefore, a depth measurement method using remote sensing-LiDAR or hyperspectral imaging-has recently been developed, which allows a wider area survey than the contact-type method as it acquires hyperspectral images from a lightweight hyperspectral sensor mounted on a frequently operating drone and by applying the optimal bandwidth ratio search algorithm to estimate the depth. In the existing hyperspectral remote sensing technique, specific physical quantities are analyzed after matching the hyperspectral image acquired by the drone's path to the image of a surface unit. Previous studies focus primarily on the application of this technology to measure the bathymetry of sandy rivers, whereas bed materials are rarely evaluated. In this study, the existing hyperspectral image-based water depth estimation technique is applied to rivers with vegetation, whereas spatio-temporal hyperspectral imaging and cross-sectional hyperspectral imaging are performed for two cases in the same area before and after vegetation is removed. The result shows that the water depth estimation in the absence of vegetation is more accurate, and in the presence of vegetation, the water depth is estimated by recognizing the height of vegetation as the bottom. In addition, highly accurate water depth estimation is achieved not only in conventional cross-sectional hyperspectral imaging, but also in spatio-temporal hyperspectral imaging. As such, the possibility of monitoring bed fluctuations (water depth fluctuation) using spatio-temporal hyperspectral imaging is confirmed.