• Title/Summary/Keyword: Bcl-G

Search Result 434, Processing Time 0.026 seconds

The Regulation of p27Kip-1 and Bcl2 Expression Is Involved in the Decrease of Osteoclast Proliferation by A2B Adenosine Receptor Stimulation

  • Kim, Hong Sung;Lee, Na Kyung
    • Biomedical Science Letters
    • /
    • v.23 no.4
    • /
    • pp.327-332
    • /
    • 2017
  • A2B adenosine receptor (A2BAR) is known to be a regulator of bone homeostasis, but the regulatory mechanism of A2BAR on the osteoclast proliferation are poorly explored. Recently, we have shown that stimulation with BAY 60-6583, a specific agonist of A2BAR, significantly reduced macrophage-colony stimulating factor (M-CSF)-induced osteoclast proliferation by inducing cell cycle arrest at G1 phase and increasing the apoptosis of osteoclasts. The objective of this study was to investigate the regulatory mechanisms of cell cycle and apoptosis by A2BAR stimulation. The expression of A2BAR and M-CSF receptor, c-Fms, was not changed by A2BAR stimulation whereas M-CSF effectively induced c-Fms expression during osteoclast proliferation. Interestingly, A2BAR stimulation remarkably increased the expression of $p27^{Kip-1}$, a cell cycle inhibitor, but the expression of Cyclin D1 and cdk4 was not affected. In addition, while BAY 60-6583 treatment reduced the expression of Bcl2, an anti-apoptotic oncogene, it failed to regulate the expression of Bax, a pro-apoptotic marker. Taken together, these results imply that the increase of $p27^{Kip-1}$ inducing cell cycle arrest at G1 phase and the decrease of Bcl2 inducing anti-apoptotic response by A2BAR stimulation contribute to the down-regulation of osteoclast proliferation.

Emodin Inhibits Breast Cancer Cell Proliferation through the ERα-MAPK/Akt-Cyclin D1/Bcl-2 Signaling Pathway

  • Sui, Jia-Qi;Xie, Kun-Peng;Zou, Wei;Xie, Ming-Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6247-6251
    • /
    • 2014
  • Background: The aim of the present study was to investigate the involvement of emodin on the growth of human breast cancer MCF-7 and MDA-MB-231 cells and the estrogen (E2) signal pathway in vitro. Materials and Methods: MTT assays were used to detect the effects of emodin on E2 induced proliferation of MCF-7 and MDA-MB-231 cells. Flow cytometry (FCM) was applied to determine the effect of emodin on E2-induced apoptosis of MCF-7 cells. Western blotting allowed detection of the effects of emodin on the expression of estrogen receptor ${\alpha}$, cyclin D1 and B-cell lymphoma-2 (Bcl-2), mitogen-activated protein kinases (MAPK) and phosphatidylinostiol 3-kinases (PI3K). Luciferase assays were emplyed to assess transcriptional activity of $ER{\alpha}$. Results: Emodin could inhibit E2-induced MCF-7 cell proliferation and anti-apoptosis effects, and arrest the cell cycle in G0/G1 phase, further blocking the effect of E2 on expression and transcriptional activity of $ER{\alpha}$. Moreover, Emodin influenced the ER ${\alpha}$ genomic pathway via downregulation of cyclin D1 and Bcl-2 protein expression, and influenced the non-genomic pathway via decreased PI3K/Akt protein expression. Conclusions: These findings indicate that emodin exerts inhibitory effects on MCF-7 cell proliferation via inhibiting both non-genomic and genomic pathways.

Ginsenoside-Rh2 Inhibits Proliferation and Induces Apoptosis of Human Gastric Cancer SGC-7901 Side Population Cells

  • Qian, Jun;Li, Jing;Jia, Jian-Guang;Jin, Xin;Yu, Da-Jun;Guo, Chen-Xu;Xie, Bo;Qian, Li-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1817-1821
    • /
    • 2016
  • Objectives: To observed the effects of ginsenoside -Rh2 (GS-Rh2) on proliferation and apoptosis of side population (SP) human gastric cancer SGC-7901 cells. Materials and Methods: SGC-7901 SP and Non-SP cells were sorted by flow cytometry and assessed using the cck-8 method. Expression of apoptosis-related proteins Bax and Bcl-2 of SP before and after the intervention was determined by Western-blotting. Results: It was found that the proliferation of SP was significantly faster than that of NSP (P<0.05). In addition, GS-Rh2 inhibited proliferation of gastric cancer SP cells, induced cell cycle arrest and cell apoptosis, and changed the expression of BAX/Bcl-2 proteins in a time-dependent and concentration-dependent manner (P<0.05). Conclusions: With increase of GS-Rh2 dose, GS-Rh2 gradually inhibit the proliferation of SGC-7901 SP cells, which have high proliferation rate, through G1/G0 phase arrest, followed by apoptosis which involves the up-regulation of Bax and the down-regulation of Bcl-2.

Studies of the effects and mechanisms of ginsenoside Re and Rk3 on myelosuppression induced by cyclophosphamide

  • Han, Jiahong;Xia, Jing;Zhang, Lianxue;Cai, Enbo;Zhao, Yan;Fei, Xuan;Jia, Xiaohuan;Yang, He;Liu, Shuangli
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.618-624
    • /
    • 2019
  • Background: Ginsenoside Re (Re) is one of the major components of Panax ginseng Meyer. Ginsenoside $Rk_3$ ($Rk_3$) is a secondary metabolite of Re. The aim of this study was to investigate and compare the effects and underlying mechanisms of Re and $Rk_3$ on cyclophosphamide-induced myelosuppression. Methods: The mice myelosuppression model was established by intraperitoneal (i.p.) injection of cyclophosphamide. Peripheral blood cells, bone marrow nucleated cells, and colony yield of hematopoietic progenitor cells in vitro were counted. The levels of erythropoietin, thrombopoietin, and granulocyte macrophage colony-stimulating factor in plasma were measured by enzyme-linked immunosorbent assay. Bone marrow cell cycle was performed by flow cytometry. The expression of apoptotic protein bcl-2, bax, and caspase-3 was detected by Western blotting. Results: Both Re and $Rk_3$ could improve peripheral blood cells, bone marrow nucleated cell counts, thymus index, and spleen index. Furthermore, they could enhance the yield of colonies cultured in vitro and make the levels of granulocyte macrophage colony-stimulating factor, erythropoietin, and thrombopoietin normal, reduce the ratio of $G_0/G_1$ phase cells, and increase the proliferation index. Finally, Re and $Rk_3$ could upregulate the expression of bcl-2, whereas they could downregulate the expression of bax and caspase-3. Conclusion: Re and $Rk_3$ could improve the hematopoietic function of myelosuppressed mice. The effect of $Rk_3$ was superior to that of Re at any dose. Regulating the levels of cytokines, promoting cells enter the normal cell cycle, regulating the balance of bcl-2/bax, and inhibiting the expression of caspase-3 may be the effects of Re and $Rk_3$ on myelosuppression.

Effect of Samhwangsasim-tang and Daehwanghwangryunsasim-tang on Palmitate-induced Lipogenesis in HepG2 cells (Palmitic acid로 지방 축적을 유도한 HepG2 cell에 대한 삼황사심탕과 대황황련사심탕의 효과 연구)

  • Um, Eun sik;Kim, Young Chul
    • The Journal of Korean Medicine
    • /
    • v.37 no.1
    • /
    • pp.62-76
    • /
    • 2016
  • Objectives: The goal of this study was to investigate the anti-lipogenic effects of Samhwangsasim-tang(SHT), Daehwanghwangryunsasim-tang(DHT) aqueous extract on HepG2 cells with palmitate. Materials and Methods: HepG2 cells treated with palmitate were used in this study as hepatic steatosis model. Cells were treated with different concentrations of SHT, DHT aqueous extract for 24 hours. Cell viability and cytotoxicity were analyzed by MTT assay. Expressions of Bcl-2, Bax, Survivin, P21, TGF-${\beta}1$, LXR-${\alpha}$, ChREBP, ACC1, SCD1 mRNA were determined by Real-time PCR. Apoptosis of cells was detected by ELISA and FACS. Expression level of caspase-3 was studied by Western blot. Lipid accumulation was indicated by Oil Red O staining. Results: SHT, DHT aqueous extract had no cytotoxicity, but decreased palmitate-induced lipid accumulation in HepG2 cells. SHT aqueous extract suppressed fatty acid synthesis by inhibiting LXR-${\alpha}$, ChREBP, SCD1 activation and increasing TGF-${\beta}1$ expression level. DHT aqueous extract also suppressed fatty acid synthesis by decreasing ChREBP expression and increasing TGF-${\beta}1$ expression. Apoptosis of lipid accumulated cells was increased by enhanced activities of P21, caspase-3 and inhibited expressions of Bcl-2, Survivin. Conclusions: These results suggest that SHT and DHT have an anti-lipogenic effects on lipid accumulation of hepatic cell. Also SHT and DHT have an efficacy to increase apoptosis of adipocyte without cytotoxicity. Therefore, SHT and DHT might have potential clinical applications for treatment of hepatic steatosis.

Apoptotic Activity of Insect Pathogenic Fungus Paecilomycesc japonica Toward Human Acute Leukemia Jurkat T Cells is Associated with Mitochondria-Dependent Caspase-3 Activation Regulated by Bcl-2

  • Park, Hye-Won;Jen, Do-Youn;Kim, Young-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.950-956
    • /
    • 2002
  • The antitumor activity of the insect pathogenic fungus Paecilomyces japonica has been attributed to apoptotic cell death. However, the mechanism underlying the induced apoptosis has not yet been elucidated. In this study, we for the first time show that mitochondria-dependent caspase-3 activation were associated with the apoptotic activity of P. japonica in human acute leukemia Jurkat T cells. When Jurkat T cells were treated with the ethyl acetate extract of P japonica at concentrations ranging from $2-6{\mu}g/ml$, apoptotic cell death. accompanied by several biochemical events such as caspase-9 activation, caspase-3 activation, degradation of poly (ADP-ribose) polymerase (PARP), and apoptotic DNA fragmentation, was induced in a dose-dependent manner. In addition, the release of cytochrome c from mitochondria was detected. Under these conditions, the expression of Fas and Fas-ligand (FasL) remained unchanged. Ethyl acetate extract-induced mitochondrial cytochrome c release, caspase-3 activation, PARP cleavage, and apoptotic DNA fragmentation were suppressed by the ectopic expression of Bcl-2, which is known to block mitochondrial cytochrorme c release. Accordingly, these results demonstrate that P. japonica-induced apoptotic cell death is mediated by a cytochrome c-dependent caspase-3 activation pathway that can be interrupted by Bcl-2.

The Effects of Litsea japonica on the Induction of Apoptosis in HL-60/ADR (까마귀쪽나무(Litsea japonica)의 HL-60/ADR 세포 Apoptosis 유도효과)

  • Kim, Elvira;Boo, Hye-Jin;Hyun, Jae-Hee;Kim, Sang-Cheol;Kang, Jung-Il;Kim, Min-Kyoung;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Korean Journal of Pharmacognosy
    • /
    • v.40 no.1
    • /
    • pp.65-69
    • /
    • 2009
  • The present study investigated the antiproliferative effect of Litsea japonica in HL-60/ADR, adriamycin resistant human promyelocytic leukemia cells. The 80% ethanol extract of L. japonica markedly inhibited the growth of HL-60/ADR cells. When HL-60/ADR cells were treated with the extract, several apoptosis events like as DNA fragmentation, chromatin condensation and the increase of the population of sub-G1 hypodiploid cells were observed. In the mechanism of apoptosis induction by L. japonica, we examined the changes of Bcl-2 and Bax protein expression levels, and activation of caspases. After the HL-60/ADR cells were treated with the extract, the Bcl-2 expression was decreased, whereas the expression of Bax was increased in a time-dependent manner compared to the control. In addition, the active forms of caspase-9 and -3 were increased and the cleavage of poly (ADP-ribose) polymerase, a vital substrate of effector caspase, was observed. The results suggest that the inhibitory effect of L. japonica on the growth of the HL-60/ADR appears to arise from the induction of apoptosis via the down-regulation of Bcl-2 and the activation of caspases.

Stigmasterol isolated from marine microalgae Navicula incerta induces apoptosis in human hepatoma HepG2 cells

  • Kim, Young-Sang;Li, Xi-Feng;Kang, Kyong-Hwa;Ryu, BoMi;Kim, Se Kwon
    • BMB Reports
    • /
    • v.47 no.8
    • /
    • pp.433-438
    • /
    • 2014
  • Plant sterols have shown potent anti-proliferative effects and apoptosis induction against breast and prostate cancers. However, the effect of sterols against hepatic cancer has not been investigated. In the present study, we assessed whether the stigmasterol isolated from Navicula incerta possesses apoptosis inductive effect in hepatocarcimona (HepG2) cells. According to the results, Stigmasterol has up-regulated the expression of pro-apoptotic gene expressions (Bax, p53) while down-regulating the anti-apoptotic genes (Bcl-2). Probably via mitochondrial apoptosis signaling pathway. With the induction of apoptosis caspase-8, 9 were activated. The DNA damage and increase in apoptotic cell numbers were observed through Hoechst staining, annexin V staining and cell cycle analysis. According to these results, we can suggest that the stigmasterol shows potent apoptosis inductive effects and has the potential to be tested as an anti-cancer therapeutic against liver cancer.

The Effects of five kinds of Artemisia capillaris $T_{HUNB}$ fractions on Cell Viability, Cell Cycle Progression and Fas-mediated Apoptosis of HepG2 Cells (인진(茵陳)분획물이 간세포활성, 세포주기 및 Fas-mediated Apoptosis에 미치는 영향)

  • Kim, Young-Chul;Lee, Jang-Hoon;Woo, Hong-Jung;Yi, Jong-Hoon
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.363-368
    • /
    • 2000
  • Objective : This study was carried out to examine the effect of five fractions of an aqueous extract from Artemisia capillaris $T_{HUNB}$. Methods : The queous extract from Artemisia capillaris $T_{HUNB}$. was fractionized into 5 kinds of material. We observed the effect of each fractions on etoposide-induced apoptosis, cell viability, cell cycle progression and mRNA expression of apoptosis-related genes in human hepatocyte cell line HepG2. Results and Conclusions : The data shows that butanol fraction of Artemisia capillaris $T_{HUNB}$. has no relation with cell cycle, however, it inhibits apoptosis significantly and the action may be due to the suppression of Fas and Sax genes and activation of Bcl-2 gene.

  • PDF

Evaluation on Anticancer Effect Against HL-60 Cells and Toxicity in vitro and in vivo of the Phenethyl Acetate Isolated from a Marine Bacterium Streptomyces griseus

  • Lee, Ji-Hyeok;Zhang, Chao;Ko, Ju-Young;Lee, Jung-Suck;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.1
    • /
    • pp.35-44
    • /
    • 2015
  • We previously identified Streptomyces griseus as an anti-cancer agent (Kim et al., 2014). In this study, we isolated compounds from S. griseus and evaluated their anticancer effect and toxicity in vitro and in vivo. Preparative centrifugal partition chromatography (CPC) was used to obtain three compounds, cyclo($_{\small{L}}$-[4-hydroxyprolinyl]-$_{\small{L}}$-leucine], cyclo($_{\small{L}}$-Phe-trans-4-hydroxy-$_{\small{L}}$-Pro) and phenethyl acetate (PA). We chose PA, which had the highest anticancer activity, as a target compound for further experiments. PA induced the formation of apoptotic bodies, DNA fragmentation, DNA accumulation in $G_0/G_1$ phase, and reactive oxygen species (ROS) formation. Furthermore, PA treatment increased Bax/Bcl-xL expression, activated caspase-3, and cleaved poly-ADP-ribose polymerase (PARP) in HL-60 cells. Simultaneous evaluation in vitro and in vivo, revealed that PA exhibited no toxicity in Vero cells and zebrafish embryos. We revealed, for the first time, that PA generates ROS, and that this ROS accumulation induced the Bcl signaling pathway.