• 제목/요약/키워드: Bayesian statistical method

검색결과 308건 처리시간 0.032초

한반도 기후변화시그널 탐지 및 예측 (Detection and Forecast of Climate Change Signal over the Korean Peninsula)

  • 손건태;이은혜;이정형
    • 응용통계연구
    • /
    • 제21권4호
    • /
    • pp.705-716
    • /
    • 2008
  • 본 연구는 한반도 지역의 지상기온에서 나타나는 기후변화시그널의 탐지와 예측을 목적으로 하고 있으며, 일본기상청 전지구 수치모델(MRI/JMA CGCM) 모의실험자료인 통제실험자료(대기 중 $CO_2$ 농도 변화가 없다는 가정 아래 실험된 자료)와 시나리오실험자료($CO_2$ 농도가 4배까지 연 1%씩 증가하는 가정 아래 실험된 자료)를 사용하였다. 수치모델 자료기간은 142년 자료이며, 관측치로 사용되는 ECMWF 재분석자료는 43년 자료이다. 모든 자료는 42개 격자점으로 이루어진 동일한 공간구조로 구성되었다. 베이지안 지문법과 자기회귀과정인 회귀모형(AUTOREG 모형)을 각각 적용하여 격자점별로 탐지 작업을 수행하였다. 탐지 결과가 유의한 격자점에 대하여 2100년까지 예측 작업을 수행하였다.

개 심장사상충을 진단하기 위한 중합연쇄반응검사 (PCR)의 진단적 특성 평가 (Evaluation of Diagnostic Performance of a Polymerase Chain Reaction for Detection of Canine Dirofilaria immitis)

  • 박선일;김두
    • 한국임상수의학회지
    • /
    • 제24권2호
    • /
    • pp.77-81
    • /
    • 2007
  • 본 연구는 개에서 심장사상충을 검출하기 위하여 표준검사를 적용하지 않은 상황에서 중합연쇄반응검사 (PCR)의 진단 능력을 평가하였다. 효소면역검사법 (ELISA)과 PCR 검사를 동시에 사용한 경우 PCR 검사의 민감도와 특이도는 두 검사의 조건부 독립을 가정한 상태에서expectation-maximization (EM) 알고리즘을 이용한 최대우도법과 Bayesian 기법으로 두 집단 검사 모형으로 분석하였다 2002-2004년 기간 중 심장사상충검사 결과를 기록한 의무기록에서 무작위로 266개 결과를 추출하여 133개씩 2회의 시험으로 배치하였다. 2회의 분석결과를 종합할 때 EM 알고리즘에서 PCR 검사의 민감도와 특이도는 각각 96.4-96.7%와 97.6-98.8%, Bayesian기법에서는 94.4-94.8h와 97.1-98%로 추정되었다. PCR 검사는 심장사상충을 스크리닝하는 도구로 유용하며, 표준검사를 적용하지 않은 상황에서 진단검사의 특성을 추론하는 방법으로 Bayesian 기법은 매우 유용함을 확인하였다.

장기억 과정에서 빠른 베이지안 변화점검출 (A Fast Bayesian Detection of Change Points Long-Memory Processes)

  • 김주원;조신섭;여인권
    • 응용통계연구
    • /
    • 제22권4호
    • /
    • pp.735-744
    • /
    • 2009
  • 이 논문에서는 장기억 과정에서의 변화점을 빨리 검출하는 베이지안 추론방법에 대해 알아본다. 장기억 과정에서의 베이지안 추정은 장기억 모수값에 따라 전체 자료에 대한 부분차분을 계산해야 하기 때문에 수행시간이 많이 걸린다는 문제가 있다. 이 논문에서는 이러한 문제를 해결하고자 장기억 모수공간을 그룹화하여 순서형으로 범주화시킨 후 설명력이 가장 높은 범주의 대표값을 선택하게 하였다. 이 방법은 초기단계에서 범주의 대표값에 대해 한번씩만 부분차분을 계산하면 되기 때문에, 매번 계산해야 하는 추정하는 방법보다, 특히 시계열자료의 수가 많은 경우, 상대적으로 빠른 베인지안 추론이 가능하다. 또한 장기억 모수공간이 (0,0.5) 이기 때문에 모수공간을 적절하게 그룹화한다면 장기억 모수를 선택하는 것이 모수를 추정하는 것에 비해 큰 차이가 없다. 이 논문에서는 나일강 수위자료 실증분석을 통해 제안된 방법의 타당성을 확인해본다.

제로팽창 음이항 회귀모형에 대한 베이지안 추론 (Bayesian Inference for the Zero In ated Negative Binomial Regression Model)

  • 심정숙;이동희;정병철
    • 응용통계연구
    • /
    • 제24권5호
    • /
    • pp.951-961
    • /
    • 2011
  • 본 논문에서는 제로팽창 음이항(ZINB) 회귀모형에서 회귀계수에 대한 추론방법으로 마코프체인몬테카를로(MC MC) 기법을 이용한 베이지안 추론방법을 제안하였다. 본 연구에서 고려한 ZINB 회귀모형은 반응변수의 평균뿐만 아니라 제로팽창확률에 대한 회귀모형을 고려한 것으로서 Jang, et al.(2010)의 연구를 확장한 것이다. 아울러 실제사례에 본 연구에서 제안한 베이지안 추론방법을 적용하고 과대산포를 허용하지 않는 제로팽창 포아송(ZIP) 회귀모형과 적합결과를 DIC를 이용하여 비교하였다. 실제 사례분석 결과 ZINB 회귀모형의 DIC가 ZIP모형보다 작게 나타나 ZINB 회귀모형이 ZIP 회귀모형보다 잘 적합되었음을 알 수 있었다.

SUR 토빗회귀모형에서 베이지안 추정과 최대가능도 추정의 비교 (A Comparison of Bayesian and Maximum Likelihood Estimations in a SUR Tobit Regression Model)

  • 이승천;최병수
    • 응용통계연구
    • /
    • 제27권6호
    • /
    • pp.991-1002
    • /
    • 2014
  • Greene (2004a,b), Lee와 Choi (2014) 등의 연구에서 토빗 회귀모형의 최대가능도 추정은 표준오차를 과소추정한다는 것이 알려졌고, 그 원인의 하나는 오차항 분산의 과소 추정에 있다고 한다. 오차항 분산의 과소 추정은 회귀계수에 대한 가설 검정 및 구간추정에 영향을 미칠 뿐 아니라 독립변수들의 주변효과를 추정하는데에도 영향을 미치게 되므로 토빗 회귀모형에 대한 적절한 분석이 수행되려면 최대가능도 추정의 과소 추정 문제를 해결하여야 한다. 일반적으로 무정보 사전분포에 의한 베이지안 추론 방법은 빈도학파들이 요구하는 효율성을 갖는 경우가 많다. 본 연구에서도 무정보 사전분포에 의한 베이지안 추론을 적용하여, 베이지안 방법론이 SUR 토빗 회귀모형에서 최대가능도 추정의 과소 추정 문제를 해결할 수 있는 하나의 대안이 될 수 있다는 것을 보였다.

다변량 비대칭 라플라스 점프확산 모형의 베이지안 추론 (Bayesian inference on multivariate asymmetric jump-diffusion models)

  • 이영은;박태영
    • 응용통계연구
    • /
    • 제29권1호
    • /
    • pp.99-112
    • /
    • 2016
  • 비대칭 점프확산 모형은 자산 가격의 비대칭적 변동을 효과적으로 설명하는 모형으로 활용되어 왔다. 그러나 다변량 모형으로 확장한 다변량 비대칭 라플라스 점프확산 모형은 가능도함수가 닫힌 해로 존재하지 않아 모형의 추론에 한계가 존재하였다. 본 논문에서는 이러한 한계점을 극복하기 위해 자료 확장 기법을 제안하고 새로운 베이지안 추론 방법을 개발한다. 본 논문에서 제안된 모형은 단일 점프와 공통 점프 뿐만 아니라 모든 가능한 조합으로 발생하는 점프를 반영한 확장된 다변량 비대칭 라플라스 점프확산 모형이다. 이러한 모형을 분석하기 위해 붕괴된 깁스 샘플러를 고안한 베이지안 방법을 개발하였다. 본 논문에서 제안된 모형과 방법을 모의실험 자료 및 2005년 1월 3일부터 2015년 9월 30일까지 관찰된 일별 KOSPI, S&P500, 그리고 Nikkei225에 적용하여 효율성을 검증하였다.

베이지안 모형을 활용한 국내 노인 자살률 질병지도 (Bayesian Analysis and Mapping of Elderly Korean Suicide Rates)

  • 이자연;김달호
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.325-334
    • /
    • 2015
  • 한국의 고령화는 매우 빠른 속도로 진행되고 있고, 노인자살은 노인의 주요 사망원인이며 노인은 다른 연력층보다 자살의 고위험군으로 알려져있다. 고령화 시대에서 노인의 자살은 사회적인 문제로 대두되고 있으며 이를 예방하기 위해 노인자살에 대한 위험요인을 파악하고, 지역적 차이를 확인하는 것이 중요하다. 특히 노인의 자살문제에서는 지역사회와의 통합결여 등이 큰 원인으로 고려되기 때문이다. 따라서, 본 논문에서는 공간적 상관관계를 고려하여 추정된 표준화사망률을 이용하여 질병지도를 작성하고자 하였다. 공간적 상관관계를 고려하기 위해서 simultaneous CAR model을 사용하였다. 2006년부터 2010년까지 통계청 사망자료를 이용하여 국내 시군구별 노인자살자수에 대해 두 모형을 적합시켜본 결과, 공간적 상관관계를 고려하지 않은 모형보다 공간적 상관관계를 고려한 모형이 더 좋은 모형임을 보였다. 또한 효율적인 베이지안 추론을 위해 격자망 방법 등을 고려하였다.

Korean Welfare Panel Data: A Computational Bayesian Method for Ordered Probit Random Effects Models

  • Lee, Hyejin;Kyung, Minjung
    • Communications for Statistical Applications and Methods
    • /
    • 제21권1호
    • /
    • pp.45-60
    • /
    • 2014
  • We introduce a MCMC sampling for a generalized linear normal random effects model with the ordered probit link function based on latent variables from suitable truncated normal distribution. Such models have proven useful in practice and we have observed numerically reasonable results in the estimation of fixed effects when the random effect term is provided. Applications that utilize Korean Welfare Panel Study data can be difficult to model; subsequently, we find that an ordered probit model with the random effects leads to an improved analyses with more accurate and precise inferences.

Bayesian Survival Estimation of Pareto Distribution of the Second Kind Based on Type II Censored Data

  • Kim, Dal-Ho;Lee, Woo-Dong;Kang, Sang-Gil
    • Communications for Statistical Applications and Methods
    • /
    • 제12권3호
    • /
    • pp.729-742
    • /
    • 2005
  • In this paper, we discuss the propriety of the various noninformative priors for the Pareto distribution. The reference prior, Jeffreys prior and ad hoc noninformative prior which is used in several literatures will be introduced and showed that which prior gives the proper posterior distribution. The reference prior and Jeffreys prior give a proper posterior distribution, but ad hoc noninformative prior which is proportional to reciprocal of the parameters does not give a proper posterior. To compute survival function, we use the well-known approximation method proposed by Lindley (1980) and Tireney and Kadane (1986). And two methods are compared by simulation. A real data example is given to illustrate our methodology.

Bayesian Estimation of the Reliability Function of the Burr Type XII Model under Asymmetric Loss Function

  • Kim, Chan-Soo
    • Communications for Statistical Applications and Methods
    • /
    • 제14권2호
    • /
    • pp.389-399
    • /
    • 2007
  • In this paper, Bayes estimates for the parameters k, c and reliability function of the Burr type XII model based on a type II censored samples under asymmetric loss functions viz., LINEX and SQUAREX loss functions are obtained. An approximation based on the Laplace approximation method (Tierney and Kadane, 1986) is used for obtaining the Bayes estimators of the parameters and reliability function. In order to compare the Bayes estimators under squared error loss, LINEX and SQUAREX loss functions respectively and the maximum likelihood estimator of the parameters and reliability function, Monte Carlo simulations are used.