• Title/Summary/Keyword: Bayesian probability interval

Search Result 30, Processing Time 0.029 seconds

Bayesian approach of weighting cell estimator

  • Lee Sangeun;Lee Juyoung;Lee Jinhee;Shin Minwoong
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.241-246
    • /
    • 2000
  • A simple random sample is taken from a population and a particular survey item is subject to nonresponse that corresponds to random subsampling of the sampled values within adjustment cells. Our object is to estimate Bayesian probability interval of the population mean.

  • PDF

Confidence Intervals for a Linear Function of Binomial Proportions Based on a Bayesian Approach (베이지안 접근에 의한 모비율 선형함수의 신뢰구간)

  • Lee, Seung-Chun
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.2
    • /
    • pp.257-266
    • /
    • 2007
  • It is known that Agresti-Coull approach is an effective tool for the construction of confidence intervals for various problems related to binomial proportions. However, the Agrest-Coull approach often produces a conservative confidence interval. In this note, confidence intervals based on a Bayesian approach are proposed for a linear function of independent binomial proportions. It is shown that the Bayesian confidence interval slightly outperforms the confidence interval based on Agresti-Coull approach in average sense.

Developing Noninformative Priors for the Common Mean of Several Normal Populations

  • Kim, Yeong-Hwa;Sohn, Eun-Seon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.1
    • /
    • pp.59-74
    • /
    • 2004
  • The paper considers the Bayesian interval estimation for the common mean of several normal populations. A Bayesian procedure is proposed based on the idea of matching asymptotically the coverage probabilities of Bayesian credible intervals with their frequentist counterparts. Several frequentist procedures based on pivots and P-values are introduced and compared with Bayesian procedure through simulation study. Both simulation results demonstrate that the Bayesian procedure performs as well or better than any available frequentist procedure even from a frequentist perspective.

  • PDF

Assessment of uncertainty associated with parameter of gumbel probability density function in rainfall frequency analysis (강우빈도해석에서 Bayesian 기법을 이용한 Gumbel 확률분포 매개변수의 불확실성 평가)

  • Moon, Jang-Won;Moon, Young-Il;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.5
    • /
    • pp.411-422
    • /
    • 2016
  • Rainfall-runoff modeling in conjunction with rainfall frequency analysis has been widely used for estimating design floods in South Korea. However, uncertainties associated with underlying distribution and sampling error have not been properly addressed. This study applied a Bayesian method to quantify the uncertainties in the rainfall frequency analysis along with Gumbel distribution. For a purpose of comparison, a probability weighted moment (PWM) was employed to estimate confidence interval. The uncertainties associated with design rainfalls were quantitatively assessed using both Bayesian and PWM methods. The results showed that the uncertainty ranges with PWM are larger than those with Bayesian approach. In addition, the Bayesian approach was able to effectively represent asymmetric feature of underlying distribution; whereas the PWM resulted in symmetric confidence interval due to the normal approximation. The use of long period data provided better results leading to the reduction of uncertainty in both methods, and the Bayesian approach showed better performance in terms of the reduction of the uncertainty.

A Bayesian approach for vibration-based long-term bridge monitoring to consider environmental and operational changes

  • Kim, Chul-Woo;Morita, Tomoaki;Oshima, Yoshinobu;Sugiura, Kunitomo
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.395-408
    • /
    • 2015
  • This study aims to propose a Bayesian approach to consider changes in temperature and vehicle weight as environmental and operational factors for vibration-based long-term bridge health monitoring. The Bayesian approach consists of three steps: step 1 is to identify damage-sensitive features from coefficients of the auto-regressive model utilizing bridge accelerations; step 2 is to perform a regression analysis of the damage-sensitive features to consider environmental and operational changes by means of the Bayesian regression; and step 3 is to make a decision on the bridge health condition based on residuals, differences between the observed and predicted damage-sensitive features, utilizing 95% confidence interval and the Bayesian hypothesis testing. Feasibility of the proposed approach is examined utilizing monitoring data on an in-service bridge recorded over a one-year period. Observations through the study demonstrated that the Bayesian regression considering environmental and operational changes led to more accurate results than that without considering environmental and operational changes. The Bayesian hypothesis testing utilizing data from the healthy bridge, the damage probability of the bridge was judged as no damage.

A Bayesian Meta Analysis for Assessing Bioequivalence among Two Generic Copies of the Same Brand-Name Drug

  • Oh, Hyun-Sook
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.2
    • /
    • pp.285-295
    • /
    • 2006
  • As more generic drugs become available, the quality, safety, and efficacy of generic drugs have become a public concern. Specifically, drug interchangeability among generic copies of the same brand-name drug is a safety concern. This research proposes a Bayesian method for assessing bioequivalence between two generic copies of the same brand-name drug from two independent $2{\times}2$ crossover design experiments. Uninformative priors are considered for general use and the posterior distribution of the difference of two generic drug effects is derived from which the highest probability density interval can be evaluated. Examples are presented for illustration.

On Estimation of HPD Interval for the Generalized Variance Using a Weighted Monte Carlo Method

  • Kim, Hea-Jung
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.2
    • /
    • pp.305-313
    • /
    • 2002
  • Regarding to inference about a scalar measure of internal scatter of Ρ-variate normal population, this paper considers an interval estimation of the generalized variance, │$\Sigma$│. Due to complicate sampling distribution, fully parametric frequentist approach for the interval estimation is not available and thus Bayesian method is pursued to calculate the highest probability density (HPD) interval for the generalized variance. It is seen that the marginal posterior distribution of the generalized variance is intractable, and hence a weighted Monte Carlo method, a variant of Chen and Shao (1999) method, is developed to calculate the HPD interval of the generalized variance. Necessary theories involved in the method and computation are provided. Finally, a simulation study is given to illustrate and examine the proposed method.

Bayesian Reliability Estimation of a New Expendable Launch Vehicle (신규 개발하는 소모성 발사체의 베이지안 신뢰도 추정)

  • Hong, Hyejin;Kim, Kyungmee O.
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.2
    • /
    • pp.199-208
    • /
    • 2014
  • Purpose: This paper explains how to obtain the Bayes estimates of the whole launch vehicle and of a vehicle stage, respectively, for a newly developed expendable launch vehicle. Methods: We determine the parameters of the beta prior distribution using the upper bound of the 60% Clopper-Pearson confidence interval of failure probability which is calculated from previous launch data considering the experience of the developer. Results: Probability that a launch vehicle developed from an inexperienced developer succeeds in the first launch is obtained by about one third, which is much smaller than that estimated from the previous research. Conclusion: The proposed approach provides a more conservative estimate than the previous noninformative prior, which is more reasonable especially for the initial reliability of a new vehicle which is developed by an inexperienced developer.

Bayesian Inference for Censored Panel Regression Model

  • Lee, Seung-Chun;Choi, Byongsu
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.2
    • /
    • pp.193-200
    • /
    • 2014
  • It was recognized by some researchers that the disturbance variance in a censored regression model is frequently underestimated by the maximum likelihood method. This underestimation has implications for the estimation of marginal effects and asymptotic standard errors. For instance, the actual coverage probability of the confidence interval based on a maximum likelihood estimate can be significantly smaller than the nominal confidence level; consequently, a Bayesian estimation is considered to overcome this difficulty. The behaviors of the maximum likelihood and Bayesian estimators of disturbance variance are examined in a fixed effects panel regression model with a limited dependent variable, which is known to have the incidental parameter problem. Behavior under random effect assumption is also investigated.

Comparison Of Interval Estimation For Relative Risk Ratio With Rare Events

  • Kim, Yong Dai;Park, Jin-Kyung
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.1
    • /
    • pp.181-187
    • /
    • 2004
  • One of objectives in epidemiologic studies is to detect the amount of change caused by a specific risk factor. Risk ratio is one of the most useful measurements in epidemiology. When we perform the inference for this measurement with rare events, the standard approach based on the normal approximation may fail, in particular when there are no disease cases observed. In this paper, we discuss and evaluate several existing methods for constructing a confidence interval of risk ratio through simulation when the disease of interest is a rare event. The results in this paper provide guidance with how to construct interval estimates for risk difference and risk ratio when there are no disease cases observed.