본 논문에서는 1998.01.03부터 2011.08.31까지 수집된 코스피 지수 자료로부터 계산된 일별 로그수익률과 일별 로그손실률에 대한 극단값 통계분석을 수행하였다. 사용된 극단값 통계분석 모형은 포아송-GPD 모형이고 모수의 추정과 극단분위수의 추정은 최대가능도 방법을 적용하였다. 본 논문에서는 또한 포아송-GPD 모형에 추가적으로 모수의 무정보사전분포를 가정한 베이지안 방법을 고려하였다. 여기서는 마르코프 연쇄 몬테칼로 방법을 적용하여 모수와 극단분위수를 추정하였다. 분석 결과 최대가능도 방법과 베이지안 방법에서 모두, 로그수익률 분포의 오른쪽 꼬리는 정규분포보다 짧은 반면, 로그손실률 분포의 오른쪽 꼬리는 정규분포보다 두텁다는 결론이 얻어졌다. 극단값 분석에서 베이지안 방법을 사용할 때의 장점은 정칙조건이 만족되지 않는 경우에도 최대가능도추정량의 전통적 점근 성질을 걱정할 필요가 없고 예측의 경우에는 모수의 불확실성과 미래 관측치의 불확실성이 모두 반영되는 효과가 있다는 것이다.
건전성 예측은 구조물의 고장이 발생될 때까지 남은 시간인 잔존유효수명을 예측하는 것으로, 이는 안전 및 정비 계획과 직접적으로 연관되기 때문에 매우 중요하다. 건전성 예측방법에는 물리모델 기반방법, 데이터 기반방법과 두 방법의 장점을 통합하는 방법이 있으며, 본 연구에서는 잔존수명 예측의 정확도가 모델변수 추정과 직접적으로 관련되는 물리모델 기반 건전성 예측에 초점을 맞춘다. 물리모델기반 건전성 예측에서는 모델변수 추정을 통해 시스템 상태의 장기 예측이 가능하지만, 대부분의 실제 구조물들의 상태모델은 여러 개의 모델변수를 포함함은 물론이고, 그 변수들이 서로 상관되어 있기 때문에 모델변수를 추정하는 일은 간단한 문제가 아니다. 본 연구에서는 물리모델 기반 건전성 예측을 위한 세 가지 변수 추정방법들의 차이를 논한다. 이 세 가지 방법들은 파티클 필터, 전반적인 베이지안 접근법, 그리고 순차적인 베이지안 접근법으로 모두 베이지안 추론이라는 하나의 이론적 바탕에 기반하지만, 샘플링 방법이나 갱신 절차 등에서 차이가 있다. 균열성장을 표현하는 Paris 모델의 변수 추정을 통해 세 가지 방법의 차이점이 논해지고, 건전성 예측 메트릭을 이용하여 정량적 차이를 표현한다. 파티클 필터방법이 건전성 예측 메트릭 측면에서 가장 높은 성능을 나타내었지만, 전반적인 베이지안 방법은 파티클 필터방법과 근소한 차이를 보이면서도 데이터가 집단으로 존재할 때에는 가장 효율적인 방법으로 나타났다.
Journal of information and communication convergence engineering
/
제15권1호
/
pp.43-48
/
2017
Movie ratings are crucial for recommendation engines that track the behavior of all users and utilize the information to suggest items the users might like. It is intuitively appealing that information about the viewing preferences in terms of movie genres is sufficient for predicting a genre of an unlabeled movie. In order to predict movie genres, we treat ratings as a feature vector, apply a Bernoulli event model to estimate the likelihood of a movie being assigned a certain genre, and evaluate the posterior probability of the genre of a given movie by using the Bayes rule. The goal of the proposed technique is to efficiently use movie ratings for the task of predicting movie genres. In our approach, we attempted to answer the question: "Given the set of users who watched a movie, is it possible to predict the genre of a movie on the basis of its ratings?" The simulation results with MovieLens 1M data demonstrated the efficiency and accuracy of the proposed technique, achieving an 83.8% prediction rate for exact prediction and 84.8% when including correlated genres.
경제적인 국제화가 심화되어 세계경제가 통합화되는 환경에서 기업 및 개인, 금융기관 등의 외환거래 참가가들에게 외환거래로 인한 환위험의 회피방안이 무엇보다 절실하다. 이 방안을 마련하기 위하여 본 연구에서는 환율, 주가와 같은 시계열데이터의 모형추정에 적합한 은닉마아코프모델을 통해 단기 환율의 예측모형을 추정하고 이를 통해 향후 예측에 적용한다. 실제의 원/달러 환율데이터를 적용하여 최적의 모형이 추정된다면 이를 통해 향후의 일정기간의 운동양태의 예측이 가능할 것이다. 은닉마아코프모형의 추정을 위하여 베이지안정보기준을 통해 모형의 상태수를 정확하게 추정하는지를 확인하였으며 추정되는 모형으로 예측한 결과 실제 운동양태와 예측에 있어 두 곡선의 운동양태가 유사함을 확인하였다.
In order to build a model to predict accidents in a complicated man-machine sytem, human errors and mechanical reliability can be viewed as the most important factors. Such factors are explicitly included in a generic model. Another point to keep in mind is that the model should be constructed so that the data in a type of accident can be utilized to predict other types of accidents. Based on such a generic prediction model, we analyze the effects of system reliability. When we improve the system reliability, in other words, when there are changes in model parameters, the predicted time to next accidents should be modified influencing the effects of system reliability improvements. We apply Bayesian approach and finds the formula to explain how a change on the machine reliability or human error probability influences the time to next accident.
Journal of the Korean Data and Information Science Society
/
제23권4호
/
pp.851-858
/
2012
We consider a bivariate Poisson regression model to analyze discrete count data when two dependent variables are present. We estimate the regression coefficients as sociated with several safety countermeasures. We use Markov chain and Monte Carlo techniques to execute some computations. A simulation and real data analysis are performed to demonstrate model fitting performances of the proposed model.
Objective: The Bayesian first-order antedependence models, which specified single nucleotide polymorphisms (SNP) effects as being spatially correlated in the conventional BayesA/B, had more accurate genomic prediction than their corresponding classical counterparts. Given advantages of $BayesC{\pi}$ over BayesA/B, we have developed hyper-$BayesC{\pi}$, ante-$BayesC{\pi}$, and ante-hyper-$BayesC{\pi}$ to evaluate influences of the antedependence model and hyperparameters for $v_g$ and $s_g^2$ on $BayesC{\pi}$.Methods: Three public data (two simulated data and one mouse data) were used to validate our proposed methods. Genomic prediction performance of proposed methods was compared to traditional $BayesC{\pi}$, ante-BayesA and ante-BayesB. Results: Through both simulation and real data analyses, we found that hyper-$BayesC{\pi}$, ante-$BayesC{\pi}$ and ante-hyper-$BayesC{\pi}$ were comparable with $BayesC{\pi}$, ante-BayesB, and ante-BayesA regarding the prediction accuracy and bias, except the situation in which ante-BayesB performed significantly worse when using a few SNPs and ${\pi}=0.95$. Conclusion: Hyper-$BayesC{\pi}$ is recommended because it avoids pre-estimated total genetic variance of a trait compared with $BayesC{\pi}$ and shortens computing time compared with ante-BayesB. Although the antedependence model in $BayesC{\pi}$ did not show the advantages in our study, larger real data with high density chip may be used to validate it again in the future.
Zhou, Binghua;Xue, Yiguo;Li, Shucai;Qiu, Daohong;Tao, Yufan;Zhang, Kai;Zhang, Xueliang;Xia, Teng
Geomechanics and Engineering
/
제22권4호
/
pp.291-303
/
2020
The deformation of the rock surrounding a tunnel manifests due to the stress redistribution within the surrounding rock. By observing the deformation of the surrounding rock, we can not only determine the stability of the surrounding rock and supporting structure but also predict the future state of the surrounding rock. In this paper, we used grey system theory to analyse the factors that affect the deformation of the rock surrounding a tunnel. The results show that the 5 main influencing factors are longitudinal wave velocity, tunnel burial depth, groundwater development, surrounding rock support type and construction management level. Furthermore, we used seismic prospecting data, preliminary survey data and excavated section monitoring data to establish a neural network learning model to predict the total amount of deformation of the surrounding rock during tunnel collapse. Subsequently, the probability of a change in deformation in each predicted section was obtained by using a Bayesian method for detecting change points. Finally, through an analysis of the distribution of the change probability and a comparison with the actual situation, we deduced the survey mark at which collapse would most likely occur. Surface collapse suddenly occurred when the tunnel was excavated to this predicted distance. This work further proved that the Bayesian method can accurately detect change points for risk evaluation, enhancing the accuracy of tunnel collapse forecasting. This research provides a reference and a guide for future research on the probability analysis of tunnel collapse.
MicroRNA (miRNA)는 약 22 nt의 작은 RNA 조각으로 이루어져 있으며 stem-loop 구조의 precursor 형태에서 최종적으로 만들어 진다. miRNA는 mRNA의 3‘UTR에 상보적으로 결합하여 유전자의 발현을 억제하거나 mRNA의 분해를 촉진한다. miRNA를 동정하기 위한 실험적인 방법은 조직 특이적인 발현, 적은 발현양 때문에 방법상 한계를 가지고 있다. 이러한 한계는 컴퓨터를 이용한 방법으로 어느 정도 해결될 수 있다. 하지만 miRNA의 서열상의 낮은 보존성은 homology를 기반으로 한 예측을 어렵게 한다. 또한 기계학습 방법인 support vector machine (SVM) 이나 naive bayes가 적용되었지만, 생물학적인 의미를 해석할 수 있는 generative model을 제시해 주지 못했다. 본 연구에서는 우수한 miRNA 예측을 보일 뿐만 아니라 학습된 모델로부터 생물학적인 지식을 얻을 수 있는 Bayesian network을 적용한다. 이를 위해서는 생물학적으로 의미 있는 특질들의 선택이 중요하다. 여기서는 position weighted matrix (PWM)과 Markov chain probability (MCP), Loop 크기, Bulge 수, spectrum, free energy profile 등을 특질로서 선택한 후 Information gain의 특질 선택법을 통해 예측에 기여도가 높은 특질 25개 와 27개를 최종적으로 선택하였다. 이로부터 Bayesian network을 학습한 후 miRNA의 예측 성능을 10 fold cross-validation으로 확인하였다. 그 결과 pre-/mature miRNA 각 각에 대한 예측 accuracy가 99.99% 100.00%를 보여, SVM이나 naive bayes 방법보다 높은 결과를 보였으며, 학습된 Bayesian network으로부터 이전 연구 결과와 일치하는 pre-miRNA 상의 의존관계를 분석할 수 있었다.
Moslemi, Azam;Mahjub, Hossein;Saidijam, Massoud;Poorolajal, Jalal;Soltanian, Ali Reza
Asian Pacific Journal of Cancer Prevention
/
제17권1호
/
pp.95-100
/
2016
Background: Survival time of lymphoma patients can be estimated with the help of microarray technology. In this study, with the use of iterative Bayesian Model Averaging (BMA) method, survival time of Mantle Cell Lymphoma patients (MCL) was estimated and in reference to the findings, patients were divided into two high-risk and low-risk groups. Materials and Methods: In this study, gene expression data of MCL patients were used in order to select a subset of genes for survival analysis with microarray data, using the iterative BMA method. To evaluate the performance of the method, patients were divided into high-risk and low-risk based on their scores. Performance prediction was investigated using the log-rank test. The bioconductor package "iterativeBMAsurv" was applied with R statistical software for classification and survival analysis. Results: In this study, 25 genes associated with survival for MCL patients were identified across 132 selected models. The maximum likelihood estimate coefficients of the selected genes and the posterior probabilities of the selected models were obtained from training data. Using this method, patients could be separated into high-risk and low-risk groups with high significance (p<0.001). Conclusions: The iterative BMA algorithm has high precision and ability for survival analysis. This method is capable of identifying a few predictive variables associated with survival, among many variables in a set of microarray data. Therefore, it can be used as a low-cost diagnostic tool in clinical research.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.