• Title/Summary/Keyword: Bayesian parameter estimation

Search Result 158, Processing Time 0.022 seconds

Shear strength prediction for SFRC and UHPC beams using a Bayesian approach

  • Cho, Hae-Chang;Park, Min-Kook;Hwang, Jin-Ha;Kang, Won-Hee;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.503-514
    • /
    • 2020
  • This study proposes prediction models for the shear strength of steel fiber reinforced concrete (SFRC) and ultra-high-performance fiber reinforced concrete (UHPC) beams using a Bayesian parameter estimation approach and a collected experimental database. Previous researchers had already proposed shear strength prediction models for SFRC and UHPC beams, but their performances were limited in terms of their prediction accuracies and the applicability to UHPC beams. Therefore, this study adopted a statistical approach based on a collected database to develop prediction models. In the database, 89 and 37 experimental data for SFRC and UHPC beams without stirrups were collected, respectively, and the proposed equations were developed using the Bayesian parameter estimation approach. The proposed models have a simplified form with important parameters, and in comparison to the existing prediction models, provide unbiased high prediction accuracy.

Bayesian Parameter Estimation of the Four-Parameter Gamma Distribution

  • Oh, Mi-Ra;Kim, Kyung-Sook;Cho, Wan-Hyun;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.255-266
    • /
    • 2007
  • A Bayesian estimation of the four-parameter gamma distribution is considered under the noninformative prior. The Bayesian estimators are obtained by the Gibbs sampling. The generation of the shape/power parameter and the power parameter in the Gibbs sampler is implemented using the adaptive rejection sampling algorithm of Gilks and Wild (1992). Also, the location parameter is generated using the adaptive rejection Metropolis sampling algorithm of Gilks, Best and Tan (1995). Finally, the simulation result is presented.

ESTIMATION OF SCALE PARAMETER AND P(Y < X) FROM RAYLEIGH DISTRIBUTION

  • Kim, Chan-Soo;Chung, Youn-Shik
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.3
    • /
    • pp.289-298
    • /
    • 2003
  • We consider the estimation problem for the scale parameter of the Rayleigh distribution using weighted balanced loss function (WBLF) which reflects both goodness of fit and precision. Under WBLF, we obtain the optimal estimator which creates a kind of balance between Bayesian and non-Bayesian estimation. We also deal with the estimation of R = P(Y < X) when Y and X are two independent but not identically distributed Rayleigh distribution under squared error loss function.

A Comparison of the Reliability Estimation Accuracy between Bayesian Methods and Classical Methods Based on Weibull Distribution (와이블분포 하에서 베이지안 기법과 전통적 기법 간의 신뢰도 추정 정확도 비교)

  • Cho, HyungJun;Lim, JunHyoung;Kim, YongSoo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.4
    • /
    • pp.256-262
    • /
    • 2016
  • The Weibull is widely used in reliability analysis, and several studies have attempted to improve estimation of the distribution's parameters. least squares estimation (LSE) or Maximum likelihood estimation (MLE) are often used to estimate distribution parameters. However, it has been proven that Bayesian methods are more suitable for small sample sizes than LSE and MLE. In this work, the Weibull parameter estimation accuracy of LSE, MLE, and Bayesian method are compared for sample sets with 3 to 30 data points. The Bayesian method was most accurate for sample sizes under 25, and the accuracy of the Bayesian method was similar to LSE and MLE as the sample size increased.

Online Parameter Estimation and Convergence Property of Dynamic Bayesian Networks

  • Cho, Hyun-Cheol;Fadali, M. Sami;Lee, Kwon-Soon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.285-294
    • /
    • 2007
  • In this paper, we investigate a novel online estimation algorithm for dynamic Bayesian network(DBN) parameters, given as conditional probabilities. We sequentially update the parameter adjustment rule based on observation data. We apply our algorithm to two well known representations of DBNs: to a first-order Markov Chain(MC) model and to a Hidden Markov Model(HMM). A sliding window allows efficient adaptive computation in real time. We also examine the stochastic convergence and stability of the learning algorithm.

Modeling Procedure to Adapt to Change of Trend of Water Demand: Application of Bayesian Parameter Estimation (물수요의 추세 변화의 적응을 위한 모델링 절차 제시:베이지안 매개변수 산정법 적용)

  • Lee, Sangeun;Park, Heekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.2
    • /
    • pp.241-249
    • /
    • 2009
  • It is well known that the trend of water demand in large-size water supply systems has been suddenly changed, and many expansions of water supply facilities become unnecessary. To be cost-effective, thus, politicians as well as many professionals lay stress on the adaptive management of water supply facilities. Failure in adapting to the new trend of demand is sure to be the most critical reason of unnecessary expansions. Hence, we try to develop the model and modeling procedure that do not depend on the old data of demand, and provide engineers with the fast learning process. To forecast water demand of Seoul, the Bayesian parameter estimation was applied, which is a representative method for statistical pattern recognition. It results that we can get a useful time-series model after observing water demand during 6 years, although trend of water demand were suddenly changed.

Parameter Estimation of Reliability Growth Model with Incomplete Data Using Bayesian Method (베이지안 기법을 적용한 Incomplete data 기반 신뢰성 성장 모델의 모수 추정)

  • Park, Cheongeon;Lim, Jisung;Lee, Sangchul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.747-752
    • /
    • 2019
  • By using the failure information and the cumulative test execution time obtained by performing the reliability growth test, it is possible to estimate the parameter of the reliability growth model, and the Mean Time Between Failure (MTBF) of the product can be predicted through the parameter estimation. However the failure information could be acquired periodically or the number of sample data of the obtained failure information could be small. Because there are various constraints such as the cost and time of test or the characteristics of the product. This may cause the error of the parameter estimation of the reliability growth model to increase. In this study, the Bayesian method is applied to estimating the parameters of the reliability growth model when the number of sample data for the fault information is small. Simulation results show that the estimation accuracy of Bayesian method is more accurate than that of Maximum Likelihood Estimation (MLE) respectively in estimation the parameters of the reliability growth model.

A Comparative Study Of Maximum Likelihood Method With Bayesian Approach In Statistical Parameter Estimation Of Static Systems (정적계통의 통계적 퍼래미터 추정에 있어 최우도법과 Bayes식방법과의 비교연구)

  • 한만춘;최경삼
    • 전기의세계
    • /
    • v.22 no.2
    • /
    • pp.51-56
    • /
    • 1973
  • The comparative study of maximum likelihood estimation with Bayesian approach was made by statistical & computational methods in center of a priori information of static systems and the effect of a priori information on the accuracy of the estimatiion was also analyzed. Through the numerical computations of some examples by digital computer, we concluded that maximum likelihood method is better than Bayesian estimation except for almost certain a priori informations. The study may therefore contribute in identification problems of dynamical systems connected with a priori informations.

  • PDF

Bayesian Estimation via the Griddy Gibbs Sampling for the Laplacian Autoregressive Time Series Model

  • Young Sook Son;Sinsup Cho
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.115-125
    • /
    • 1995
  • This paper deals with the Bayesian estimation for the NLAR(1) model with Laplacian marginals. Assuming the independent uniform priors for two parameters of the NLAT(1) model, the griddy Gbbs sampler by Ritter and Tanner(1992) is used to obtain the Bayesian estimates. Random numbers generated form the uniform priors ate used as the grids for each parameter. Some simulations are conducted and compared with the maximum likelihood estimation result.

  • PDF

Bayesian Parameter Estimation using the MCMC method for the Mean Change Model of Multivariate Normal Random Variates

  • Oh, Mi-Ra;Kim, Eoi-Lyoung;Sim, Jung-Wook;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.1
    • /
    • pp.79-91
    • /
    • 2004
  • In this thesis, Bayesian parameter estimation procedure is discussed for the mean change model of multivariate normal random variates under the assumption of noninformative priors for all the parameters. Parameters are estimated by Gibbs sampling method. In Gibbs sampler, the change point parameter is generated by Metropolis-Hastings algorithm. We apply our methodology to numerical data to examine it.