• 제목/요약/키워드: Bayesian neural network

검색결과 133건 처리시간 0.023초

시계열 자료의 예측을 위한 베이지안 순환 신경망에 관한 연구 (A Study on the Bayesian Recurrent Neural Network for Time Series Prediction)

  • 홍찬영;박정훈;윤태성;박진배
    • 제어로봇시스템학회논문지
    • /
    • 제10권12호
    • /
    • pp.1295-1304
    • /
    • 2004
  • In this paper, the Bayesian recurrent neural network is proposed to predict time series data. A neural network predictor requests proper learning strategy to adjust the network weights, and one needs to prepare for non-linear and non-stationary evolution of network weights. The Bayesian neural network in this paper estimates not the single set of weights but the probability distributions of weights. In other words, the weights vector is set as a state vector of state space method, and its probability distributions are estimated in accordance with the particle filtering process. This approach makes it possible to obtain more exact estimation of the weights. In the aspect of network architecture, it is known that the recurrent feedback structure is superior to the feedforward structure for the problem of time series prediction. Therefore, the recurrent neural network with Bayesian inference, what we call Bayesian recurrent neural network (BRNN), is expected to show higher performance than the normal neural network. To verify the proposed method, the time series data are numerically generated and various kinds of neural network predictor are applied on it in order to be compared. As a result, feedback structure and Bayesian learning are better than feedforward structure and backpropagation learning, respectively. Consequently, it is verified that the Bayesian reccurent neural network shows better a prediction result than the common Bayesian neural network.

Bayesian Neural Network with Recurrent Architecture for Time Series Prediction

  • Hong, Chan-Young;Park, Jung-Hun;Yoon, Tae-Sung;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.631-634
    • /
    • 2004
  • In this paper, the Bayesian recurrent neural network (BRNN) is proposed to predict time series data. Among the various traditional prediction methodologies, a neural network method is considered to be more effective in case of non-linear and non-stationary time series data. A neural network predictor requests proper learning strategy to adjust the network weights, and one need to prepare for non-linear and non-stationary evolution of network weights. The Bayesian neural network in this paper estimates not the single set of weights but the probability distributions of weights. In other words, we sets the weight vector as a state vector of state space method, and estimates its probability distributions in accordance with the Bayesian inference. This approach makes it possible to obtain more exact estimation of the weights. Moreover, in the aspect of network architecture, it is known that the recurrent feedback structure is superior to the feedforward structure for the problem of time series prediction. Therefore, the recurrent network with Bayesian inference, what we call BRNN, is expected to show higher performance than the normal neural network. To verify the performance of the proposed method, the time series data are numerically generated and a neural network predictor is applied on it. As a result, BRNN is proved to show better prediction result than common feedforward Bayesian neural network.

  • PDF

Bayesian Analysis for Neural Network Models

  • Chung, Younshik;Jung, Jinhyouk;Kim, Chansoo
    • Communications for Statistical Applications and Methods
    • /
    • 제9권1호
    • /
    • pp.155-166
    • /
    • 2002
  • Neural networks have been studied as a popular tool for classification and they are very flexible. Also, they are used for many applications of pattern classification and pattern recognition. This paper focuses on Bayesian approach to feed-forward neural networks with single hidden layer of units with logistic activation. In this model, we are interested in deciding the number of nodes of neural network model with p input units, one hidden layer with m hidden nodes and one output unit in Bayesian setup for fixed m. Here, we use the latent variable into the prior of the coefficient regression, and we introduce the 'sequential step' which is based on the idea of the data augmentation by Tanner and Wong(1787). The MCMC method(Gibbs sampler and Metropolish algorithm) can be used to overcome the complicated Bayesian computation. Finally, a proposed method is applied to a simulated data.

베이지안 신경망을 이용한 분류분석 (A Classification Analysis using Bayesian Neural Network)

  • 황진수;최성용;전홍석
    • Journal of the Korean Data and Information Science Society
    • /
    • 제12권2호
    • /
    • pp.11-25
    • /
    • 2001
  • 자료들 사이에 존재하는 관계, 패턴, 규칙등을 찾아내서 모형화 하는 통계적인 분류기법은 여러가지가 있다. 그러나 우리가 얻게 되는 지식은 어떤 일련의 분류규칙에 의해서가 아닌 관찰과 학습을 통한 훈련으로부터 얻게 된다. 본 베이지안 학습은 모든 형태의 불확실성을 표현하는 확률로써 우리의 믿음의 정도를 표현하는 것으로 해석될 수 있으며, 확실한 결과가 알려짐에 따라 확률이론 법칙을 사용하여 이러한 확률들을 갱신한다. 또한 신경망 모형은 이미 알고 있는 속성들에 근거하여 아직 알지 못하는 집단이나 특질들을 예측하게 해준다. 본 논문에서는 이러한 두 가지 방법을 결합한 베이지안 신경망과 기존의 CHAID, CART, QUBST 분류 알고리즘에 있어서 각각 오분류율을 비교연구하였다.

  • PDF

Nonlinear Networked Control Systems with Random Nature using Neural Approach and Dynamic Bayesian Networks

  • Cho, Hyun-Cheol;Lee, Kwon-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권3호
    • /
    • pp.444-452
    • /
    • 2008
  • We propose an intelligent predictive control approach for a nonlinear networked control system (NCS) with time-varying delay and random observation. The control is given by the sum of a nominal control and a corrective control. The nominal control is determined analytically using a linearized system model with fixed time delay. The corrective control is generated online by a neural network optimizer. A Markov chain (MC) dynamic Bayesian network (DBN) predicts the dynamics of the stochastic system online to allow predictive control design. We apply our proposed method to a satellite attitude control system and evaluate its control performance through computer simulation.

AL6061-T4의 측면 엔드밀 가공에서 표면거칠기 예측을 위한 인공신경망 적용에 관한 연구 (A Study on the Application of ANN for Surface Roughness Prediction in Side Milling AL6061-T4 by Endmill)

  • 천세호
    • 한국기계가공학회지
    • /
    • 제20권5호
    • /
    • pp.55-60
    • /
    • 2021
  • We applied an artificial neural network (ANN) and evaluated surface roughness prediction in lateral milling using an endmill. The selected workpiece was AL6061-T4 to obtain data of surface roughness measurement based on the spindle speed, feed, and depth of cut. The Bayesian optimization algorithm was applied to the number of nodes and the learning rate of each hidden layer to optimize the neural network. Experimental results show that the neural network applied to optimize using the Expected Improvement(EI) algorithm showed the best performance. Additionally, the predicted values do not exactly match during the neural network evaluation; however, the predicted tendency does march. Moreover, it is found that the neural network can be used to predict the surface roughness in the milling of aluminum alloy.

Protein Secondary Structure Prediction using Multiple Neural Network Likelihood Models

  • Kim, Seong-Gon;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권4호
    • /
    • pp.314-318
    • /
    • 2010
  • Predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure is a complex non-linear task that has been approached by several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods. This project introduces a new machine learning method by combining Bayesian Inference with offline trained Multilayered Perceptron (MLP) models as the likelihood for secondary structure prediction of proteins. With varying window sizes of neighboring amino acid information, the information is extracted and passed back and forth between the Neural Net and the Bayesian Inference process until the posterior probability of the secondary structure converges.

Online nonparametric Bayesian analysis of parsimonious Gaussian mixture models and scenes clustering

  • Zhou, Ri-Gui;Wang, Wei
    • ETRI Journal
    • /
    • 제43권1호
    • /
    • pp.74-81
    • /
    • 2021
  • The mixture model is a very powerful and flexible tool in clustering analysis. Based on the Dirichlet process and parsimonious Gaussian distribution, we propose a new nonparametric mixture framework for solving challenging clustering problems. Meanwhile, the inference of the model depends on the efficient online variational Bayesian approach, which enhances the information exchange between the whole and the part to a certain extent and applies to scalable datasets. The experiments on the scene database indicate that the novel clustering framework, when combined with a convolutional neural network for feature extraction, has meaningful advantages over other models.

신경망을 이용한 우리나라의 시공 간적 가뭄의 해석 (Spatial-Temporal Frough Analysis of South Korea Based On Neural Networks)

  • 신현석
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 1998년도 학술발표회 논문집
    • /
    • pp.7-13
    • /
    • 1998
  • 본 연구에서는 공간적으로 분포되어 있는 연강우량 자료를 이용한 지역 기상학 적인 가뭄을 정의하고 해석하는 모형을 제시한다. 비선형, 비매변수법에 기초한 공간 해석 신경망 (Spatial Analysis Neural Network:SANN)모형을 이용하여, 각 년에 대하여 공간의 임의 점에 서 의 극심, 심, 경심, 및 비 가뭄 확률을 전 대상 지역에 대하여 산출을 통하여 가뭄확률도를 작성 하며, Bayesian 가뭄 심도 지수 (BDSI)를 통하여 전 대상 지역을 가장 적절하게 극심, 심, 경심, 미 가뭄 지역으로 분류하는 방법을 제시한다. 또한, 각 년의 대표적인 가뭄의 형태를 제시 하여 줄 수 있는 지역 가뭄확률과 지역 가뭄 확률 지수를 소개한다. 이 모든 시공간의 가뭄 해석의 방법 은 실제로 우리나라(남한) 전역에 대하여 실시하여, 과거 1967년부터 1996년 까지 의 공간적이고 시간적인 가뭄의 발생 현황과 그 특징을 조사한다. 이는 우리나라 장기 수자원 개발 및 유역 관 리를 더욱 정량적인 가뭄정보에 의해 수행하게하여 줄 수 있을 것이다.

  • PDF

New Cellular Neural Networks Template for Image Halftoning based on Bayesian Rough Sets

  • Elsayed Radwan;Basem Y. Alkazemi;Ahmed I. Sharaf
    • International Journal of Computer Science & Network Security
    • /
    • 제23권4호
    • /
    • pp.85-94
    • /
    • 2023
  • Image halftoning is a technique for varying grayscale images into two-tone binary images. Unfortunately, the static representation of an image-half toning, wherever each pixel intensity is combined by its local neighbors only, causes missing subjective problem. Also, the existing noise causes an instability criterion. In this paper an image half-toning is represented as a dynamical system for recognizing the global representation. Also, noise is reduced based on a probabilistic model. Since image half-toning is considered as 2-D matrix with a full connected pass, this structure is recognized by the dynamical system of Cellular Neural Networks (CNNs) which is defined by its template. Bayesian Rough Sets is used in exploiting the ideal CNNs construction that synthesis its dynamic. Also, Bayesian rough sets contribute to enhance the quality of the halftone image by removing noise and discovering the effective parameters in the CNNs template. The novelty of this method lies in finding a probabilistic based technique to discover the term of CNNs template and define new learning rules for CNNs internal work. A numerical experiment is conducted on image half-toning corrupted by Gaussian noise.