• Title/Summary/Keyword: Bayesian inference model

Search Result 223, Processing Time 0.026 seconds

An Alternative Approach in Analyzing the Impacts of Online Feedback System;A Bayesian Inference Model

  • Yoo, Byung-Joon;Lee, Gun-Woong
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.395-400
    • /
    • 2007
  • Previous studies present the mixed results on online reputation mechanism. In this study, we have found that an approach based on Bayesian statistics can explain most results of previous studies which are conflicting with each others. With this model, we explain why negative ratings have more significant marginal impacts on sellers' reputation than positive ones do. Furthermore, we even show why the feedbacks with a few negative ratings may increase the value of the item and final prices by confirming buyers' prior beliefs on the sellers' reputation much more than those without negative ratings. Also, we explain why there are not many negative ratings. Even though some studies suggest this because of generosity of users, our model shows that the reason is that the existence of FS itself prevents bad sellers from participating to the market as a signal itself. Even further, we show how this extreme tendency of positive ratings gets even stronger as markets evolve. Finally, to validate our analytical results, we examine the previous studies and see what factors effect the outcomes of their analyses.

  • PDF

Bayesian Hierarchical Model with Skewed Elliptical Distribution

  • Chung Younshik
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.5-12
    • /
    • 2000
  • Meta-analysis refers to quantitative methods for combining results from independent studies in order to draw overall conclusions. We consider hierarchical models including selection models under a skewed heavy tailed error distribution and it is shown to be useful in such Bayesian meta-analysis. A general class of skewed elliptical distribution is reviewed and developed. These rich class of models combine the information of independent studies, allowing investigation of variability both between and within studies, and weight function. Here we investigate sensitivity of results to unobserved studies by considering a hierarchical selection model and use Markov chain Monte Carlo methods to develop inference for the parameters of interest.

  • PDF

Bayesian Inference for Censored Panel Regression Model

  • Lee, Seung-Chun;Choi, Byongsu
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.2
    • /
    • pp.193-200
    • /
    • 2014
  • It was recognized by some researchers that the disturbance variance in a censored regression model is frequently underestimated by the maximum likelihood method. This underestimation has implications for the estimation of marginal effects and asymptotic standard errors. For instance, the actual coverage probability of the confidence interval based on a maximum likelihood estimate can be significantly smaller than the nominal confidence level; consequently, a Bayesian estimation is considered to overcome this difficulty. The behaviors of the maximum likelihood and Bayesian estimators of disturbance variance are examined in a fixed effects panel regression model with a limited dependent variable, which is known to have the incidental parameter problem. Behavior under random effect assumption is also investigated.

Bayesian analysis of a repairable system subject to overhauls with bounded failure intensity

  • Preeti Wanti, Srivastava;Nidhi, Jain
    • International Journal of Reliability and Applications
    • /
    • v.14 no.2
    • /
    • pp.55-70
    • /
    • 2013
  • This paper deals with the Bayesian analysis of the failure data of a repairable mechanical system subject to minimal repairs and periodic overhauls. The effect of overhauls on the reliability of the system is modeled by a proportional age reduction model and the failure process between two successive overhauls is assumed to be 2-parameter Engelhardt-Bain process (2-EBP). Power Law Process (PLP) model has a disadvantage which 2-EBP can overcome. On the basis of the observed data and of a number of suitable prior densities, point and interval estimation of model parameters, as well as quantities of relevant interest are found. Also hypothesis tests on the effectiveness of performed overhauls have been developed using Bayes factor. Sensitivity analysis of improvement parameter is carried out. Finally, a numerical application is used to illustrate the proposed method.

  • PDF

Context Aware System based on Bayesian Network driven Context Reasoning and Ontology Context Modeling

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.254-259
    • /
    • 2008
  • Uncertainty of result of context awareness always exists in any context-awareness computing. This falling-off in accuracy of context awareness result is mostly caused by the imperfectness and incompleteness of sensed data, because of this reasons, we must improve the accuracy of context awareness. In this article, we propose a novel approach to model the uncertain context by using ontology and context reasoning method based on Bayesian Network. Our context aware processing is divided into two parts; context modeling and context reasoning. The context modeling is based on ontology for facilitating knowledge reuse and sharing. The ontology facilitates the share and reuse of information over similar domains of not only the logical knowledge but also the uncertain knowledge. Also the ontology can be used to structure learning for Bayesian network. The context reasoning is based on Bayesian Networks for probabilistic inference to solve the uncertain reasoning in context-aware processing problem in a flexible and adaptive situation.

Multiple Comparison for the One-Way ANOVA with the Power Prior

  • Bae, Re-Na;Kang, Yun-Hee;Hong, Min-Young;Kim, Seong-W.
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.1
    • /
    • pp.13-26
    • /
    • 2008
  • Inference on the present data will be more reliable when the data arising from previous similar studies are available. The data arising from previous studies are referred as historical data. The power prior is defined by the likelihood function based on the historical data to the power $a_0$, where $0\;{\le}\;a_0\;{\le}\;1$. The power prior is a useful informative prior for Bayesian inference such as model selection and model comparison. We utilize the historical data to perform multiple comparison in the one-way ANOVA model. We demonstrate our results with some simulated datasets under a simple order restriction between the treatments.

New Inference for a Multiclass Gaussian Process Classification Model using a Variational Bayesian EM Algorithm and Laplace Approximation

  • Cho, Wanhyun;Kim, Sangkyoon;Park, Soonyoung
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.202-208
    • /
    • 2015
  • In this study, we propose a new inference algorithm for a multiclass Gaussian process classification model using a variational EM framework and the Laplace approximation (LA) technique. This is performed in two steps, called expectation and maximization. First, in the expectation step (E-step), using Bayes' theorem and the LA technique, we derive the approximate posterior distribution of the latent function, indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. In the maximization step, we compute the maximum likelihood estimators for hyper-parameters of a covariance matrix necessary to define the prior distribution of the latent function by using the posterior distribution derived in the E-step. These steps iteratively repeat until a convergence condition is satisfied. Moreover, we conducted the experiments by using synthetic data and Iris data in order to verify the performance of the proposed algorithm. Experimental results reveal that the proposed algorithm shows good performance on these datasets.

Bayesian inference for an ordered multiple linear regression with skew normal errors

  • Jeong, Jeongmun;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.2
    • /
    • pp.189-199
    • /
    • 2020
  • This paper studies a Bayesian ordered multiple linear regression model with skew normal error. It is reasonable that the kind of inherent information available in an applied regression requires some constraints on the coefficients to be estimated. In addition, the assumption of normality of the errors is sometimes not appropriate in the real data. Therefore, to explain such situations more flexibly, we use the skew-normal distribution given by Sahu et al. (The Canadian Journal of Statistics, 31, 129-150, 2003) for error-terms including normal distribution. For Bayesian methodology, the Markov chain Monte Carlo method is employed to resolve complicated integration problems. Also, under the improper priors, the propriety of the associated posterior density is shown. Our Bayesian proposed model is applied to NZAPB's apple data. For model comparison between the skew normal error model and the normal error model, we use the Bayes factor and deviance information criterion given by Spiegelhalter et al. (Journal of the Royal Statistical Society Series B (Statistical Methodology), 64, 583-639, 2002). We also consider the problem of detecting an influential point concerning skewness using Bayes factors. Finally, concluding remarks are discussed.

Hierarchical Bayes Analysis of Smoking and Lung Cancer Data

  • Oh, Man-Suk;Park, Hyun-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.115-128
    • /
    • 2002
  • Hierarchical models are widely used for inference on correlated parameters as a compromise between underfitting and overfilling problems. In this paper, we take a Bayesian approach to analyzing hierarchical models and suggest a Markov chain Monte Carlo methods to get around computational difficulties in Bayesian analysis of the hierarchical models. We apply the method to a real data on smoking and lung cancer which are collected from cities in China.

The Development of e-Learning System for Science and Engineering Mathematics using Computer Algebra System (컴퓨터 대수 시스템을 이용한 이공계 수학용이러닝 시스템 개발)

  • Park, Hong-Joon;Jun, Young-Cook;Jang, Moon-Suk
    • The KIPS Transactions:PartA
    • /
    • v.14A no.6
    • /
    • pp.383-390
    • /
    • 2007
  • This paper describes the e-learning system for science and engineering mathematics using computer algebra system and Bayesian inference network. The best feature of this system is using one of the most recent mathematical dynamic web content authoring model which is called client independent dynamic web content authoring model and using the Bayesian inference network for diagnosing student's learning. The authoring module using computer algebra system provides teacher-user with easy way to make dynamic mathematical web contents. The diagnosis module using Bayesian inference network helps students know the weaker parts of their learning, in this way our system determines appropriate next learning sequences in order to provide supplementary learning feedback.