• 제목/요약/키워드: Bayesian Prediction

검색결과 304건 처리시간 0.034초

리팩토링을 위한 소프트웨어 메트릭의 베이지안 네트워크 기반 확률적 관리 (Bayesian Network-based Probabilistic Management of Software Metrics for Refactoring)

  • 최승희;이구연
    • 정보과학회 논문지
    • /
    • 제43권12호
    • /
    • pp.1334-1341
    • /
    • 2016
  • 최근 지능형 스마트 디바이스의 눈부신 발전과 사용으로 개발 단계의 소프트웨어 결함 관리의 중요성이 부각되고 있다. 효과적 결함 관리를 위해 소프트웨어 메트릭을 토대로 많은 결함 예측 모델 연구가 수행되고 있지만, 결함 예측 모델 연구 성과가 널리 확산되지는 못하고 있다. 본 논문에서는 결함 존재 유무에 관한 이진적 결함 예측 모델의 제약을 극복할 수 있도록, 베이지안 네트워크 기반 확률적 소프트웨어 메트릭 관리 방법을 제안한다. 제안 모델은 소프트웨어 메트릭을 활용하여 베이지안 네트워크를 구성하고, 이를 토대로 베이지안 추론을 수행하여 리팩토링을 위한 개선점을 식별할 수 있는 모델이다. 코드 리팩토링을 통해 소스 코드가 개선되면 관련 메트릭 측정값 또한 변하게 된다. 제안 모델은 리팩토링을 통한 메트릭의 개선으로 얻을 수 있는 결함 제거 효과를 확률 값으로 제시해준다. 따라서 이진 값 형태의 확정성을 극복할 수 있으며, 불확정적인 확률 값으로 의사결정의 유연성을 확보할 수 있을 것이다.

TANK 모형의 매개변수 추정을 위한 베이지안 접근법의 적용: MCMC 및 GLUE 방법의 비교 (Application of Bayesian Approach to Parameter Estimation of TANK Model: Comparison of MCMC and GLUE Methods)

  • 김령은;원정은;최정현;이옥정;김상단
    • 한국물환경학회지
    • /
    • 제36권4호
    • /
    • pp.300-313
    • /
    • 2020
  • The Bayesian approach can be used to estimate hydrologic model parameters from the prior expert knowledge about the parameter values and the observed data. The purpose of this study was to compare the performance of the two Bayesian methods, the Metropolis-Hastings (MH) algorithm and the Generalized Likelihood Uncertainty Estimation (GLUE) method. These two methods were applied to the TANK model, a hydrological model comprising 13 parameters, to examine the uncertainty of the parameters of the model. The TANK model comprises a combination of multiple reservoir-type virtual vessels with orifice-type outlets and implements a common major hydrological process using the runoff calculations that convert the rainfall to the flow. As a result of the application to the Nam River A watershed, the two Bayesian methods yielded similar flow simulation results even though the parameter estimates obtained by the two methods were of somewhat different values. Both methods ensure the model's prediction accuracy even when the observed flow data available for parameter estimation is limited. However, the prediction accuracy of the model using the MH algorithm yielded slightly better results than that of the GLUE method. The flow duration curve calculated using the limited observed flow data showed that the marginal reliability is secured from the perspective of practical application.

Causal Inference Network of Genes Related with Bone Metastasis of Breast Cancer and Osteoblasts Using Causal Bayesian Networks

  • Park, Sung Bae;Chung, Chun Kee;Gonzalez, Efrain;Yoo, Changwon
    • 대한골대사학회지
    • /
    • 제25권4호
    • /
    • pp.251-266
    • /
    • 2018
  • Background: The causal networks among genes that are commonly expressed in osteoblasts and during bone metastasis (BM) of breast cancer (BC) are not well understood. Here, we developed a machine learning method to obtain a plausible causal network of genes that are commonly expressed during BM and in osteoblasts in BC. Methods: We selected BC genes that are commonly expressed during BM and in osteoblasts from the Gene Expression Omnibus database. Bayesian Network Inference with Java Objects (Banjo) was used to obtain the Bayesian network. Genes registered as BC related genes were included as candidate genes in the implementation of Banjo. Next, we obtained the Bayesian structure and assessed the prediction rate for BM, conditional independence among nodes, and causality among nodes. Furthermore, we reported the maximum relative risks (RRs) of combined gene expression of the genes in the model. Results: We mechanistically identified 33 significantly related and plausibly involved genes in the development of BC BM. Further model evaluations showed that 16 genes were enough for a model to be statistically significant in terms of maximum likelihood of the causal Bayesian networks (CBNs) and for correct prediction of BM of BC. Maximum RRs of combined gene expression patterns showed that the expression levels of UBIAD1, HEBP1, BTNL8, TSPO, PSAT1, and ZFP36L2 significantly affected development of BM from BC. Conclusions: The CBN structure can be used as a reasonable inference network for accurately predicting BM in BC.

공간 예측 모델을 이용한 산사태 재해의 인명 위험평가 (Life Risk Assessment of Landslide Disaster Using Spatial Prediction Model)

  • 장동호
    • 환경영향평가
    • /
    • 제15권6호
    • /
    • pp.373-383
    • /
    • 2006
  • The spatial mapping of risk is very useful data in planning for disaster preparedness. This research presents a methodology for making the landslide life risk map in the Boeun area which had considerable landslide damage following heavy rain in August, 1998. We have developed a three-stage procedure in spatial data analysis not only to estimate the probability of the occurrence of the natural hazardous events but also to evaluate the uncertainty of the estimators of that probability. The three-stage procedure consists of: (i)construction of a hazard prediction map of "future" hazardous events; (ii) validation of prediction results and estimation of the probability of occurrence for each predicted hazard level; and (iii) generation of risk maps with the introduction of human life factors representing assumed or established vulnerability levels by combining the prediction map in the first stage and the estimated probabilities in the second stage with human life data. The significance of the landslide susceptibility map was evaluated by computing a prediction rate curve. It is used that the Bayesian prediction model and the case study results (the landslide susceptibility map and prediction rate curve) can be prepared for prevention of future landslide life risk map. Data from the Bayesian model-based landslide susceptibility map and prediction ratio curves were used together with human rife data to draft future landslide life risk maps. Results reveal that individual pixels had low risks, but the total risk death toll was estimated at 3.14 people. In particular, the dangerous areas involving an estimated 1/100 people were shown to have the highest risk among all research-target areas. Three people were killed in this area when landslides occurred in 1998. Thus, this risk map can deliver factual damage situation prediction to policy decision-makers, and subsequently can be used as useful data in preventing disasters. In particular, drafting of maps on landslide risk in various steps will enable one to forecast the occurrence of disasters.

확률론적 베이지언 모델링에 의한 케이블 교량의 복합열화 리스크 평가 및 예측시스템 (The Risk Assessment and Prediction for the Mixed Deterioration in Cable Bridges Using a Stochastic Bayesian Modeling)

  • 조태준;이정배;김성수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권5호
    • /
    • pp.29-39
    • /
    • 2012
  • 상관관계가 높은 복합열화의 완벽한 개별예측모델의 개발은 매우 어려운 문제로, 본 논문에서는 현수교 시스템의 미래열화와 유지 예산을 예측하기 위하여, 10년간의 유지 데이터가 주어진 매개변수(파손지표와 사용성)의 사후 확률 밀도함수를 찾기 위해 베이지언 추론을 적용하였다. 마르코프 연쇄 몬테카를로법을 이용하여 매개변수의 사후 분포를 조사하였다. 감소한 사용성의 모의위험예측은 사전분포와 연간유지 업무에서 업데이트한 데이터의 가능성에 따라 작성한 사후 분포이다. 기존의 선형 예측 모델과 비교하면, 제안된 2차 모델은 교량부품의 사용성, 위험요소, 그리고 유지 예산의 측정 데이터에 대하여 매우 개선된 수렴성과 근접성을 제공한다. 따라서 제안된 2차 추계학적 회귀 모델을 기반으로 복잡한 사회간접설비의 미래 성능과 유지관리예산을 예측하고 제어할 수 있는 기회를 제공할 것으로 기대한다.

베이지안 추론 기반 니켈기 초합금의 열화도 정량화 방법과 열화도 및 크리프 수명 예측의 방법 (Degradation Quantification Method and Degradation and Creep Life Prediction Method for Nickel-Based Superalloys Based on Bayesian Inference)

  • 유준상;오하영
    • 한국정보통신학회논문지
    • /
    • 제27권1호
    • /
    • pp.15-26
    • /
    • 2023
  • 본 연구의 목적은 고온부품의 소재로 사용하는 니켈기 초합금인 DA-5161 SX에 대한 크리프시험으로 얻은 시편 의 주사전자현미경으로 촬영한 미세조직 단면의 이미지로부터 인공지능 기반 열화인덱스(Degradation Index)로 정 량화 하는 새로운 방법을 제시하고 운전 중인 기기의 고온부품의 구성품을 파괴하지 않고 베이지안 추론 기반 열화 도를 예측하는 모델과, Larson-Miller Parameter(LMP)를 예측하여 크리프 수명 예측 모델을 제안하는 것이다. 니켈 기 초합금 미세조직인 감마프라임 상(γ')의 기하학적 특징 및 베이지안 추론 기반으로 소량의 이미지로 일관성 있는 대푯값을 추론하는 새로운 열화인덱스 방법과 고온부품을 파괴하지 않고 소재의 환경조건 정보만으로 열화인덱스 와 LMP를 예측할 수 있는 방법을 제안한다.

Quality Variable Prediction for Dynamic Process Based on Adaptive Principal Component Regression with Selective Integration of Multiple Local Models

  • Tian, Ying;Zhu, Yuting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권4호
    • /
    • pp.1193-1215
    • /
    • 2021
  • The measurement of the key product quality index plays an important role in improving the production efficiency and ensuring the safety of the enterprise. Since the actual working conditions and parameters will inevitably change to some extent with time, such as drift of working point, wear of equipment and temperature change, etc., these will lead to the degradation of the quality variable prediction model. To deal with this problem, the selective integrated moving windows based principal component regression (SIMV-PCR) is proposed in this study. In the algorithm of traditional moving window, only the latest local process information is used, and the global process information will not be enough. In order to make full use of the process information contained in the past windows, a set of local models with differences are selected through hypothesis testing theory. The significance levels of both T - test and χ2 - test are used to judge whether there is identity between two local models. Then the models are integrated by Bayesian quality estimation to improve the accuracy of quality variable prediction. The effectiveness of the proposed adaptive soft measurement method is verified by a numerical example and a practical industrial process.

앙상블 유량예측기법의 불확실성 평가 (Uncertainty assessment of ensemble streamflow prediction method)

  • 김선호;강신욱;배덕효
    • 한국수자원학회논문집
    • /
    • 제51권6호
    • /
    • pp.523-533
    • /
    • 2018
  • 본 연구에서는 충주댐 유역에 대해 앙상블 유량예측기법의 강우-유출 모델 매개변수, 입력자료에 따른 불확실성 분석을 수행하였다. 앙상블 유량예측기법으로는 ESP (Ensemble Streamflow Prediction) 기법과 BAYES-ESP (Bayesian-ESP) 기법을 활용하였으며, 강우-유출 모델로는 ABCD를 활용하였다. 모델 매개변수에 따른 불확실성 분석은 GLUE (Generalized Likelihood Uncertainty Estimation) 기법을 적용하였으며, 입력자료에 따른 불확실성 분석은 유량예측 앙상블에 활용되는 기상시나리오의 기간에 따라 수행하였다. 연구결과 앙상블 유량예측 기법은 입력자료 보다 모델 매개변수의 영향을 크게 받았으며, 20년 이상의 관측 기상자료가 확보되었을 때 활용하는 것이 적절하였다. 또한 BAYES-ESP는 ESP에 비해 불확실성을 감소시킬 수 있는 것으로 나타났다. 본 연구는 불확실성 분석을 통해 앙상블 유량예측기법의 특징을 규명하고 오차의 원인을 분석하였다는 점에서 가치가 있다고 판단된다.

삼각분할표 자료에서 베이지안 모형을 이용한 예측 (Prediction in run-off triangle using Bayesian linear model)

  • 이주미;임요한;한규섭;이경은
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권2호
    • /
    • pp.411-423
    • /
    • 2009
  • 본 논문은 삼각 분할표 자료의 예측문제에 있어 Verrall (1990)의 발생연도효과와 경과년도효과만 있는 베이지안 선형모형을 절대연도효과가 있는 모형으로 확장한 모형을 제시하고 이에 대한 추정 방법으로 마르코프 연쇄 몬테칼로 방법을 제안한다. 제안된 모형과 추정 방법은 세 가지 실제 예를 통하여 기존의 방법들에 비해서 일반적으로 작은 상대 예측오차를 제공함을 보였다.

  • PDF

원자력 발전소 사고의 근사적인 베이지안 예측기법 (An Approximation Method in Bayesian Prediction of Nuclear Power Plant Accidents)

  • 양희중
    • 대한산업공학회지
    • /
    • 제16권2호
    • /
    • pp.135-147
    • /
    • 1990
  • A nuclear power plant can be viewed as a large complex man-machine system where high system reliability is obtained by ensuring that sub-systems are designed to operate at a very high level of performance. The chance of severe accident involving at least partial core-melt is very low but once it happens the consequence is very catastrophic. The prediction of risk in low probability, high-risk incidents must be examined in the contest of general engineering knowledge and operational experience. Engineering knowledge forms part of the prior information that must be quantified and then updated by statistical evidence gathered from operational experience. Recently, Bayesian procedures have been used to estimate rate of accident and to predict future risks. The Bayesian procedure has advantages in that it efficiently incorporates experts opinions and, if properly applied, it adaptively updates the model parameters such as the rate or probability of accidents. But at the same time it has the disadvantages of computational complexity. The predictive distribution for the time to next incident can not always be expected to end up with a nice closed form even with conjugate priors. Thus we often encounter a numerical integration problem with high dimensions to obtain a predictive distribution, which is practically unsolvable for a model that involves many parameters. In order to circumvent this difficulty, we propose a method of approximation that essentially breaks down a problem involving many integrations into several repetitive steps so that each step involves only a small number of integrations.

  • PDF