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Abstract

A nuclear power plant can be viewed as a large complex man-machine system where high
system reliability is obtained by ensuring that sub-systems are designed to operate at a very
high level of performance. The chance of severe accident involving at least partial core-melt
is very low but once it happens the consequence is very catastrophic. The prediction of risk
in low probability, high-risk incidents must be examined in the context of general engineering
knowledge and operational experience. Engineering knowledge forms part of the prior information
that must be quantified and then updated by statistical evidence gathered from operational experie-
nce. Recently. Bayvesian procedures have been used to estimate rate of accident and to predict
future risks. The Bayesian procedure has advantages in that it efficiently incorporates experts
opnions and, if properly applied. it adaptively updates the model parameters such as the rate
or probability of accidenis. But at the same time it has the disadvantages of computational comple-
xity. The predictive distribution for the time to next incident can not always be expected to
end up with a nice closed form even with conjugate priors. Thus we often encounter a numerical
integration problem with high dimensions to obtain a predictive distribution. which is practicaily
unsolvable for a model that involves many parameters. In order to circumvent this difficulty.

we propose a method of approximation that essentially breaks down a problem involving many
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integrations into several repetitive steps so that each step involves only a small number of integra-

tions.

1. Introduction and Background

Predictions of accidents in nuclear power plants
cannot be made without understanding the safety
characteristics of complex nuclear power plants.
Predictors should carefully examine the most criti-
cal factors threatening the safe operation of nuclear
power plants. particularly how these factors could
interact and lead to a nuclear accident. Enginee-
ring knowledge forms part of the prior information
that must be quantified and then updated by statis-
tical evidence gathered from operational experie-
nce.

Although the nuclear accidents occur in innume-
rable ways. they fall into only a few categories
from the stand point of public safety. Evans and
Hopel 19841, the group of experts of the Nuclear
Energy Agency in Paris(NEA[1986]), and Tat Chi
Chow, and R. M. Oliver[ 1988] proposed their cla-
ssification schemes. The c¢lassification schemes are
very subjective and rather arbitrary, but they are
all similar in that they all use the likelihood of
accidents to release radioactivity as the criterion.
In this paper, we calssify the historical incidents
to take care of two important points in modeling.
One is the importance of human reliability when
a nuclear power plant is considered as a large man-
machine system : the other is the interaction bet-
ween low and high severity indicdents. To utilize
the fact that one severity level incident may contain
information helpful in predicting the other, we cla-
ssify the incidents into different groups depending

on their severity. The number of different severity

groups to be classified is determined based on the
purpose of the analysis and the availability of infor-
mation contained in data. We start with three diffe-
rent severily groups - minor. significant, and se-
vere incidents. These groups are defined as fol-
lows -

serve incidents . incidents that include core
melt or partial core melt by which the reactor suf-
fers fairly extensive damage and some quantity of
radioactivity is released into the atmosphere.

= significant incidents - incidents that include
miajor contamination of an area or workers or threat
to a final defensive system in the nuclear reactor.

minor incidents . all precursors selected by
Accident Sequence Precursor Program in U. 5. A.
except those selected zs severe or significant inci-
dents.

We introduce another classification of incide-
nts - level 0, level 1, and level 2. Level 2 incide-
nts consist of serve incidents, level 1 incidents
of level 2 incidents and significant incidents, and
level O incidents consist of level 1 incidents and
minor incidents. Thus level ¢ incidents include
all precursors, level 1 incidents are a subset of
level 0 incidents, and level 2 incidents are a subset
of level 1 incidents. Based on such classificatioins,
the U. 8. Nuclear power industry has witnessed
235 level U incidents with a total operating experie-
nce of 504.682 Effective Reactor Years(ERYs),
where ERYs is defined as the Reactor Years(RYs)
multiplied by the portion of time during which a
reactor is on line. Of the 235 level 0 incidents,

7 were classi fied as level 1 incidents. Of the 7
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level 1 incidents, 1 was classified as a level 2 inci-
dent.

For each incident, we also examine causes that
can be atributed to the incident initiation and cau-
ses that escalate the incident from minor to signifi-
cant or severe incident status. The causes of inci-
dent initiation include many factors such as ma-
chine failures, operator errors in manual control,
communication or decision, and fire, earthquakes.
etc. To pay special attention to the human reliabi-
lity, we treat cperator errors as one type of causes
of incident initiation and all the other causes as
another type. Once an incident is initiated it can
escalate to a more severe incident through ancther
series of machine failures or operator errors or
combination of failures and errors, while causes
rather than operator errors or machine failures are
negligible. Thus operator errors and machine fai-
lures are two major causes considered in incident
escalation.

The above classification enables us to extract th-
ree pieces of information from a single incident -
count of incident. severity level. and causes of
incident initiation and escalation. Now we define

notations and assumptions that will be used throu-

ghout this paper.

Notation

subsystem j - group of machines and operators
whose failure or error is responsible for the inci-
dent escalation from level I—1 to level i j=1,
2

T . effective reactor years

no™(T) ¢ number of level ¢ incidents over a time
period (0, T} initiated involving operator errors

ne(T) - number of Ivel 0 incidents over a time

period (0, T) initiated without involving operator
errors _

no{T) © number of level 0 incidents over a time
period (0, T). n(T) +ng(T)

af(T) | number of level j incidents over a time

period (0, T) that invoive operator errors only

when escalating from level j—1

n™(T) : number of Jevel j incidents over a time
period €0, T) that involve machine failures only
when escalating from level —1

n?(T) - number of level j incidents over a time

period (0, T) that involve both machine failures

and operator errors when escalating from level j—1

n™(T) . number of level j incidents over a time
period (0, T) that involve machine failures when
escalating from level j— 1, n°(T)+n/(T)

n™T) © number of level j incidents over a time
period (0, T) that involve operators errors when
escalating from level j—1, n{T)+n(T)

n(T) : number of level j incidents over a time
period (0, T)» nP(T)+nP(T)+o/(T)

%'l time to next Jevel j incident that involves
operator errors only when escalating from level

-1

m -

%" . time to next level j incident that involves
machine failures only when escalating from level

i—1

%t time to next level j incident that involves

both machine failures and operator errors when

escalating from level j—1
x, . time until next level j incident, minkx™,
thu ij:l

.. probability of machine failures in sub-system

8,. probability of operator errors in sub-svsteimn

A" arrival rate of level 0 incidents iniliated
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involving operator errors
P
without Involving operator errors
ho t
Ac
LN{p, o :

meters u, o

arrival rate of level 0 incidents mitiated

arrival rate of level 0 incidents. AS™+As
arrival rate of level j incidents

Lognormal distribution with para-

P{A} . Poisson distribution with parameter A

I'(a, B} ° Gamma distribution with parameters
o, B

Bela, b):
a b

Beta distribution with parameters

Assumptions

1. Since the accident in nuclear power plants

is rare, we assume that the counting process of

0"™(T), ns(T) follows Poisson distributions given
parameters A, A5, respectively.

2. Model parameters are assumed to be indepe-
ndent of one another.

Based on the classification of three different se-
verity levels and causes of incident initiation and
escalation selected as above, the number of incide-
nts over time is summarized in Table 1.

When we perform a Bayesian prediction, we as-
sume prior distributions on model parameters and
update them as we acquire more data, and finally
get predictive distribution by integrating out unob-

servable model parameters :

plx D)= p(@ | D) plx| B)d® - (1)

where @ denote the vector parameters in a predic-

tion model, and D denotes data, and x denotes

Table 1. Number of Incidents over Time

End of Level O Level 1 Level 2

Year Cum. ERYs n' n® 1o TS S L n"  ny n® om
1869 12.344 O 1 1 0 0 ¢ 8] o 9] o g
1970 16.387 2 4 1 0 0 1 0 ¢ 0 0
1871 24.378 4 12 1 0] 0 1 0 0 0 0
1972 35.181 11 7 18 1 o} 0 1 #] Q 0] 0]
1573 50.094 14 10 24 1 0 (¥ 1 0 0 0 0]
1974 68,719 17 1 28 1 ] #] 1 0 ] 0] 0]
1975 98.884 24 15 38 2 o 0 2 §] g 0 Q
1976 133.547 27 18 45 2 8] 4] 2 0 0 0 0
1977 173,575 3g 22 61 2 4] 0 2 0 #] #] 0
1378 219,279 43 29 78 3 0 0 3 Q0 0 0 0
1979 261,275 65 38 103 3 0 1 4 1 ¢ 4] i
1380 303.624 85 44 129 4 0 1 5 1 o Q 1
1981 348.836 97 50 147 4 1 1 5] 1 0 0 1
1984 395,765 122 56 178 4 1 1 5] 1 0 0 i
1985 451,206 154 87 221 4 1 2 7 ! Q 0 i
1986 504.682 167 €8 235 4 1 2 7 1 0 0 i
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the time to next incident. Level 0 incidents are
influenced by two parameters X", A" Level ] inci-
dents are influenced by 2(j+1) parameters, As™,
A op and &, i=1,, j. In order to cbtain the
predictive distribution of level j accident. we have
to solve 2(j+ 1) dimensional numerical integration
problem which is impractical when j becomes large.
Therefore we are in need of developing a methodo-

logy that can cope with such a difficulty.

2. Approximation Method
2-1. Lognormal Priors

To assess prior distributions for model parame-
ters we use expert opinion as well as available data.
Among the available data arranged in Table 1, we
will use the portion up to the end of 1980 for the
prior information and the remaining recent data
will be used to obtain and analyze the behavior
of posterior distributions. Expert opinions are
available from previous works in nuclear power
plant industry or some related areas such as
WASH-1400 Nuclear Safety Studyl 19751, Predic-
ting Nuclear Incidents by Tat-Chi Chow, and R.M.
Oliver[1988]. and Handbook of Human Reliability
Analysis with Emphasis on Nuclear Power Plant
Applications[ 19801, etc.

A normal distribution is not a good candidate
for a distribution of failure rates. There have been
several studies including Wechsler[1952]. and
Green and Bourne[1972] that have shown that
most human traits and abilities do not conform to
a normal distribution. Works such as WASH-1400
Nuclear Safety Study[1975), Tat-Chi Cfhow et al.
[1088] have suggested that arrival rates of various

severity level incidents are lognormally distribu-
ted. The rationale of using lognormal distributions
is that a safety system provided with many reducn-
dancies tends to bunch up towards the low probabi-
lity of failure. The plot of the arrival rates of A"
and AF from the data also shows the tendency of
positive skewness. Thus we start with lognormal
distribution for arrival rates of level ¢ incidents.
Using the weighted mean and variance from the

data in Table 1. we firstly obtain

A ~Ln(-2, 0.2)  AS~LN(-1.4, 0.3}

A lognormal distribution can be approximated
by a Gamma distribution when the ratio of mean
to standard deviation of a lognormal distribution
is greater than 1. In this case a beil-shaped Gamina
distribution is guaranteed. Vesely(1977] has per-
formed a sensitivity analysis using a Monte Carlo
procedure to see if the assumption of different ki-
nds of distributions for the human failure estimates
would materially affect the failure of various sub-
systems in safety-related systems. It was found
that the predicted failure rate did not differ mate-
rially no matter what distribution was assumed.
Mills and Hatfield[1974] have also shown that the
forecasts of a failure rate is insensitive to the distri-
butional assumptions. We adopt the convention
that if a random variable ) follows a Gamma distri-
bution with parameters o and B, the probability

density function is expressed as

_ B RAAY= e o«
p(A)=T{(a, p)= ey Elxl= 5

The above lognormal priors are approximated by

AM-T(2.39, 16.3) AS~T(2.2, 9.6

Fig. 1 plots the lognormal and Gamma distributions



FHF BT B

140
plas™)
IN(=2, 0.2)
I(2.39, 16.3)
‘ i
0 0.2 0.4 0.6 0.8 1.0

pAe) !

IN(—1.4, 0.3)
(2.2, 9.6)

AGC

0.2 0.4

0.6 0.8

1.0

Fig. 1. Arrival Rates Approximated by Gamma Distributions.

for arrival rates and it can he seen that the approxi-
mation by the Gamma distributions is quite close.

The motivation to introduce a Gamma approxi-
mation is that the use of the Gamma prior brings
us several simplifications in calculation. If the dist-
ribution” of & is I'(a, §) and we have cbserved
n everts in 1T units of time where the number of
events given parameter A follows a Poisson distri-
bution, then the distribution of A is closed under
observations. In other words, the posterior distri-
bution is also T(«’, §7), where (') denotes poste-

rior parameters -

a'=a+n,
pr=p+T
In addition to this advantage in parameter upda-
ting, the predictive distribution of the time to next
can be obtained in a ciosed form.

incident, x,

which is a shifted pareto distribution -

plx 1 D)=)px | ) p(x | D3

= B‘ o' a’
G G
+7T T
— [3 o a n‘ errrraerra it enn (3)
p+T+x Pp+T+x

2-2. Arrival Rate of Level O incidents

The arrival rate of level 0 incidents, Ay is the
sum of two arrival rates A™ and A5, which have
independent Gamma distributions. The distribu-
tion of A, is obtained by a convolution of the distri-
butions of ;" and A" Let two independent random
variables X and Y, representing arrival rates, fol-
low a Gamma distribition with parameters ai. B
and oz B respectivelv. And let Z dencte the sum
of X and Y. Then the distribution of Z is obtained

by
o BB et
fe-v(z) -jn —
BolBalz—x} et guttzms! o
T(G.g)
Blulﬁzuze.ﬂg, » |
—- al—l.( P S S T I N
Ma)r{a,) 'fo Xz ) e dx

When arrivai rates are small andor B, is closc

to ﬁ:s

e‘zﬁl—ﬁz‘-xméo__

1
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Thus p{ko | D)

BB e 10-‘
fx+y(z)z—~—~—j XNz~ 0= dx

Ia)T(ag)® 8-

We substitute u=xz with dx=z du. then

fl u?H(1—u) du

0 +a2— K
Blul [32“2 Zul a2—1 eazx
I (0.1)1 (0'.1)

fX+Y(Z) =
=C B B T o

The constant C is obtained from the relation
ffz)dz=1,

1
C: al o[ ™ 1tai—1 -f2
B B2 l, ¥ et dz
— 1
Biyer Tantow)
(ﬁ—)«l Ilata:
2
So we get
Bul"ruZ an+a2"1 e-$2z
b)) = oy “Tata
T
ar
Bu}+o2 Zr.11+u2—1 e-ﬂu
fx+Y(Z)= ""r((11+(1'z‘ Bl)

r((11+0-1)

Therefore we approximate the arrival rate of level
0 incidents with a Gamma distribution where the
value of parameter By is obtained by the mean
of Bs™ and Bo° -

a0l D~T{ay, 8°)=T(108.59. 214.01)

Fig. 2 shows the distributions of the arrival rate
of level 0 incidents obtained by convolution and

by Gamma approximation.

o= By Convolution

- I(108. 59,

4 214.01)
e
0+ T T x’hiD

0.3 0.4 0.5 0.6 0.7 0.8

Fig. 2. Distribution of Ao Approximated by @ Gamma

Distribution.

3. Arrival Rate of

Level | Incidents

The predictive distribution for a time to next

level 1 incident is obtained as follows :

plx ID):””D(Xl [ 2™ A 01 B0
p(?tohb, Aoty G I D) dlohb dAocd¢|de1

Consider the event tree in Fig. 3 that shows the
escalation process up to level 1 only. The counts
at the end of each sequence can be considered as
randomly partitioned numbers from the total num-
ber of level 0 incidents with probabilities of (1—¢1)
(1-980, (1—0.8, ¢:.{1—6,), and ¢:8; from the
top to the bottom sequence, respectively. Then
the number of incidents that pass through each
sequence follows a Poisson distribution with a rate
of A, times the associated probabilities.

Therefore the time to next incident is exponentially

distributed with the appropriate rates
x* | Ao ¢ 81~ ExpQo(1— 628

" e 01 8,~Explutn(1—86J)

% | Aos ®v 01~ ExpQod8y)



142

FEF

EFXRTEaE

{ n
6, n'

VL Ve (1= 038
Dy " l-o(bl(] -4,
R WS

Associated Rate

M(1_¢1)(] _91)

Fig- 3. Event Tree Showing the Escalation Process to Level 1.

where
A= AP S

Since the next incident may follow any of those
sequences. time to next level 1 incident % is mini-
mum of x"» %™ and x,". It can be shown that
the minimum of exponentially distributed indepen-
dent random variables is also exponential with arri-
val rate the sum of all individual arrival rates. Thus

we obtain
(XI | lﬁo ¢1‘ 91):min[x1h‘ xlma x1b| lﬂ! ¢19 6'11
~Exp(7xo(¢1+9;—¢191))

Now generally consider level j incidents. The

p(x | D) ={[ plx | ®)p(D; | D)dp,
where @= (™, A, Guy ¢ O 0r, 6)
Because of the repetitive property of sub-models.
we can only consider the sub-event tree in Fig.
4 that shows the escalation process from level j—1
to level j incidents.

For the same reasons as discussed above, time
to next level j incident is exponentially distributed

as follows :

%" | A ¢ 8 Exp(u-.(1—)8)
%" | -1 ¢ & Exp(d-19(1—8))
1 o @ O—Exp(y-108)

predictive distribution for the time to next leve] ~ Where
j incident is obtained by =AM+ Ay
Asscciated Rate
i T (-8
UL VI % 7/ SOE T NP -V | I S R, A1 —Ho;
n ; ——n{" A (16
. nr® o o’ A= 108;

Fig. 4. Sub-Tree Showing Escalation Process From Level j—1 1o Level |.
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M1 =Mool o1 T B = G- 18y-1) 152,35
Thus we obtain

(x| ®)=minlx" x" x| &l
~Exp(y- (o 6,—08)

The arrival rate of level j—1 incidents, -, can
be recursively obtained from A, For a multi-level
model. level j incidents are influenced by 2(i+1)
unohservable parameters. The predictive distribu-
tion for the time to the next level j incident in
equation (1) can not always be expected to end
up with a nice closed form even with conjugate
priors. Thus we encounter a numerical integration
problem with 2(j+ 1) dimensions to obtain a predi-
ctive distribution for level j incidents, which is pra-
ctially unsolvable for large j. In order to circumvent
this difficulty, we propose a method of approxima-
ti:on that essentiaily breaks down a problem invol-
ving many integraticns into several repetitive steps
so that each step involves only a small number
of integrétions.

To find the distribution of Ay, let Ay Ass o1
8, follow distributions of Fi, For Gi. and Hi, respe-
ctively. Then the cumulative distribution of X
is
Fi(z) =Prob. {M=he{gn 0= .80 <z}

= J‘J'[,Q{QIJrgl_&lBl)_(_z fo(he) @1 (1) hu(Be) dhdgnds

—[ i 5w BRI @) dodids,

— Ay
1{0:)dAed8,

J 1.00) Gy ( M(l 9)) h

By differencing equation (4), we obtain

d S
() =—F{ =], [PHk)g
dz

2— hobh
——Im8) ————

M(l 9) dlode], caseaans (5)

h(1—8)

Now we want to find a closed form distribution
that approximates the distribution obtained by
equation (5) so that prediction is simple by using
equation {3). Let Ao~ T{as Po) as we have already
approximated, and E[¢:+6:—¢:0,]=w. and Var
(¢ +8,— &0 ] =0/ Since ¢ and 8, are indepen-

dent of each other, w, and oi" are chtained by

= E[¢1] + E[BJ - E[¢1]E[¢1]

oi2=Varl o]+ Varl8,]+ Var[ 98] —
2 COVE¢14 ¢l191]'_2 COV[G:[, ¢191:|

=Varlo,]+ Var[0,]+ {E[¢,]}* Varle.J+
1E[0,]}? Var[g: ]+ Varlg] Varlgid
-9 Elod Varlend—2ELe,] Varleid - (67

The mean and variance of the arrival rate of level

1 incidents are calculated from

Elx, ]—_' 1
Bo :
aitay
B’

_.00 2
Var[A] —B;j T o1
For small 51/ 1. {¢1+6—&:8)) approximately be-
haves like a constant and it can be shown that a
constant times a Gamma random variable 1s also
Gamma, A can be approximated by I'(ar B0, We

obtain parameters o, B from equation(7) !

2

Colly” . Bows
(0.0+1)012+!-112 ' ((10+1}G12+}1;2

=

For similar reasons we can recursively obtain that

the arrival rate of higher level incidents follows

a Gamma distributions
7\,-=l,-—1(¢,-+9;‘-¢£j)~1"(ad. B, T=1.2.3,

where
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((1;-1+ 1)(5;2+j.ljz T ((1;—1+1)012+}1;2

- (8)

a;

and y; of are obtained from equation {6} by repla-
cing subscript 1 with j.

The branch probabilities 9;. ¢; are assumed to
follow a Beta distribution since it is a quite flexible
distribution covering almost all forms of distribu-
tions between 0 and 1. We adopt the prior parame-
ters in Heejoon Yang[1989] :

6~Be(6,600) ¢;~Be(4,67) j=1,2

When the prior distribution of branch parameters
are assumed to be a Beta distribution and the like-
lihood of the counts passing through the down bra-
tich in the event tree is Binomial conditional on
a corresponding branch parameter and the total
counts passing through the upstream fork in the
event tree, the posterior distribution of the branch
parameters is also a Beta disiribution with new
parameters reflecting the sum of all accident se-
quences which pass through “up” and “down” bra-

nches sharing a common parametergsee Fig. 4.

Gj"'Be(a;, b,) ¢,—~Be(c,-, dJ)
6 | D*"Be(aﬁ Iljh+ l'ljh; b;+ nj—l_nj-1+ Iljm)

¢ | P~Belg+n™, dj+n-,+ ™)

Using the above mentioned updating scheme and

equation(8), we obtain

A | D~T(68.47, 426.17)
Ao | D~T(3.24, 2542.35)

Fig. 5 shows the posterior distributions of arrival
rates for level 1 and 2 incidents approximated by
Gamma distributions.

The above approximations are based on the inde-
pendence assumption among model parameters,
similar value of B, and B.°, and small o,/ .. Even
though we may start with fairly different B, and
" these parameters are updated by adding the
total operating experience T. Thus as T becomes
large, the initial difference between B and P,
becomes relatively unimportant. Furthermore. as
we acquire more and more data, the distributions
of ¢ and 0 become sharper and sharper, resulting
in smaller values of 6,1, Therefore we can expect

moere accurate approximations as we observe more

p(?h I D)

co
o

- By Equation (5.3)
-+ T(8.47, 426.17)

: A
1 0.00 0.02 0.04 0.06

p(lz I D)
800‘

E:

6004

- By Equation{5.3)
-+ I'(3.24, 2543.35)

400+

200

G
0. 000

0. 0004

0.002 0.0046

Fig. 3. Distribution of A, and A, Approximated by Gamma.
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data.

Due to the approximation method and the prope-
rties of the Gamma prior and the Paisson likeli-
hood, the predictive distribution of time to next
level j incident that needs a 2(j+1) dimensional
numerical integration in equation (1) reduces to
a nice closed from as in equation (3). The expected
value. which is the conventionally used point pre-
dictor, does not well represent the predictive dist-
ribution since the distribution has a long tail. Thus
we can use a median and quantiles instead.

Let

p=Prob. {time to next incident<z, t D!

Then z, denotes quantiles where z,.; denotes a me-
gian. The Gamma prior and Poisson likelihood agaia
simplify the equation for quantiles in a closed form
as in equation {9}, and Table 2 summarizes the resu-

Its of prediction.

1
ZD=B2{ (___) 1/<;2._11r ................................ (g)
1=p

4. Summary

We develop an approximation method to solve
high dimension numerical integrations. The appro-
simation method essentially breaks down a problem
involving many integrations into several repetitive
steps so that each step involves only a small num-

ber of integrations. It enables us to easily obtain

Table 2. Qunatiles of Time to Next Sever Incident

Units 5% 25% 50% 75% 95%

ERY 41 236 606 1358 3867
RY 61 349 896 2007 5715

posterior distributions in closed forms. We show
that distributions obtained by approximation me-
thods are quite close to the real ones obtained by
numerical integrations.

Due to the approximation method, the forecast
can be easily done 5 starting with assessed priors
and assumed likelyhoeds we update model parame-
ters as we acquire more data, and then we follow
the approximation procedure to obtain the parame-
ter values of the Gamma distribution for the arrival
rate of level j incidents, and finally substitute the
obtained posterior parameters of the Gamma distri-
bution in the derived equation that finds the guan-
tiles of time to next incident. Also we show that
we can expect more accurate approximations as

we observe more data.
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