• Title/Summary/Keyword: Bayesian Prediction

Search Result 304, Processing Time 0.03 seconds

Statistical Applications for the Prediction of White Hispanic Breast Cancer Survival

  • Khan, Hafiz Mohammad Rafiqullah;Saxena, Anshul;Gabbidon, Kemesha;Ross, Elizabeth;Shrestha, Alice
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5571-5575
    • /
    • 2014
  • Background: The ability to predict the survival time of breast cancer patients is important because of the potential high morbidity and mortality associated with the disease. To develop a predictive inference for determining the survival of breast cancer patients, we applied a novel Bayesian method. In this paper, we propose the development of a databased statistical probability model and application of the Bayesian method to predict future survival times for White Hispanic female breast cancer patients, diagnosed in the US during 1973-2009. Materials and Methods: A stratified random sample of White Hispanic female patient survival data was selected from the Surveillance Epidemiology and End Results (SEER) database to derive statistical probability models. Four were considered to identify the best-fit model. We used three standard model-building criteria, which included Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and Deviance Information Criteria (DIC) to measure the goodness of fit. Furthermore, the Bayesian method was used to derive future survival inferences for survival times. Results: The highest number of White Hispanic female breast cancer patients in this sample was from New Mexico and the lowest from Hawaii. The mean (SD) age at diagnosis (years) was 58.2 (14.2). The mean (SD) of survival time (months) for White Hispanic females was 72.7 (32.2). We found that the exponentiated Weibull model best fit the survival times compared to other widely known statistical probability models. The predictive inference for future survival times is presented using the Bayesian method. Conclusions: The findings are significant for treatment planning and health-care cost allocation. They should also contribute to further research on breast cancer survival issues.

Optimal fractions in terms of a prediction-oriented measure

  • Lee, Won-Woo
    • Journal of the Korean Statistical Society
    • /
    • v.22 no.2
    • /
    • pp.209-217
    • /
    • 1993
  • The multicollinearity problem in a multiple linear regression model may present deleterious effects on predictions. Thus, its is desirable to consider the optimal fractions with respect to the unbiased estimate of the mean squares errors of the predicted values. Interstingly, the optimal fractions can be also illuminated by the Bayesian inerpretation of the general James-Stein estimators.

  • PDF

Performance Prediction of Multiple Hypothesis Tracking Algorithm (다중 가설 추적 알고리듬의 추적 성능예측)

  • 정영헌
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2787-2790
    • /
    • 2003
  • In this paper, we predict tracking performance of the multiple hypothesis tracking (MHT) algorithm. The MHT algorithm is known to be an optimal Bayesian approach and is superior to asly other tracking filters because it takes into account the events that the measurements can be originated from new targets and false alarms 3s well as interesting targets. In the MHT algorithm, a number of candidate hypotheses are generated and evaluated later as more data are received. The probability of each candidate hypotheses is approximately evaluated by using the hybrid conditional average approach (HYCA). We performed numerical experiments to show the validity of our performance prediction.

  • PDF

Bayesian small area estimations with measurement errors

  • Goo, You Mee;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.885-893
    • /
    • 2013
  • This paper considers Bayes estimations of the small area means under Fay-Herriot model with measurement errors. We provide empirical Bayes predictors of small area means with the corresponding jackknifed mean squared prediction errors. Also we obtain hierarchical Bayes predictors and the corresponding posterior standard deviations using Gibbs sampling. Numerical studies are provided to illustrate our methods and compare their eciencies.

Comparison of Waist-to-height Ratio (WHtR), Body Mass Index (BMI) and Waist Circumference (WC) as a Screening Tool for Prediction of Metabolic-related Diseases

  • Oh, Hyun Sook
    • Journal of Integrative Natural Science
    • /
    • v.8 no.4
    • /
    • pp.305-312
    • /
    • 2015
  • The present study showed WHtR to be significantly better than BMI and WC for prediction of metabolic-related diseases in the middle-aged and older people in Korea, based on Bayesian ordered probit model analysis. The variations of WC, BMI and WHtR were compared according to the number of metabolic-related diseases such as hypertension, dyslipidemia, stroke, myocardial infarction, angina pectoris and diabetes. It was found that the three measures showed the similar variation except a very few extreme cases for age less than 40. For subjects over the age of 40, WC was not significant and WHtR gave more influence in greater variability than BMI on the number of metabolic diseases. Also, the rate of change for WHtR was higher than for BMI as the number of metabolic-related diseases increased. Specifically, the difference of the marginal effect of WHtR between no disease and only one disease was 1.81 times higher than that of BMI. Moreover, it was pointed out that the threshold value of WHtR for obesity should be considered differently by age.

Durability Prediction for Concrete Structures Exposed to Carbonation Using a Bayesian Approach (베이지안 기법을 이용한 중성화에 노출된 콘크리트 구조물의 내구성 예측)

  • Jung, Hyun-Jun;Kim, Gyu-Seon;Ju, Min-Kwan;Lee, Sang-Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.275-276
    • /
    • 2009
  • This paper provides a new approach for predicting the corrosion resistivity of reinforced concrete structures exposed to carbonation. In this method, the prediction can be updated successively by a Bayesian theory when additional data are available. The stochastic properties of model parameters are explicitly taken into account into the model. To simplify the procedure of the model, the probability of the durability limit is determined from the samples obtained from the Latin hypercube sampling technique. The new method may be very useful in designing important concrete structures and help to predict the remaining service life of existing concrete structures which have been monitored.

  • PDF

Application of Quality Statistical Techniques Based on the Review and the Interpretation of Medical Decision Metrics (의학적 의사결정 지표의 고찰 및 해석에 기초한 품질통계기법의 적용)

  • Choi, Sungwoon
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.2
    • /
    • pp.243-253
    • /
    • 2013
  • This research paper introduces the application and implementation of medical decision metrics that classifies medical decision-making into four different metrics using statistical diagnostic tools, such as confusion matrix, normal distribution, Bayesian prediction and Receiver Operating Curve(ROC). In this study, the metrics are developed based on cross-section study, cohort study and case-control study done by systematic literature review and reformulated the structure of type I error, type II error, confidence level and power of detection. The study proposed implementation strategies for 10 quality improvement activities via 14 medical decision metrics which consider specificity and sensitivity in terms of ${\alpha}$ and ${\beta}$. Examples of ROC implication are depicted in this paper with a useful guidelines to implement a continuous quality improvement, not only in a variable acceptance sampling in Quality Control(QC) but also in a supplier grading score chart in Supplier Chain Management(SCM) quality. This research paper is the first to apply and implement medical decision-making tools as quality improvement activities. These proposed models will help quality practitioners to enhance the process and product quality level.

Determining Direction of Conditional Probabilistic Dependencies between Clusters (클러스터간 조건부 확률적 의존의 방향성 결정에 대한 연구)

  • Jung, Sung-Won;Lee, Do-Heon;Lee, Kwang-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.684-690
    • /
    • 2007
  • We describe our method to predict the direction of conditional probabilistic dependencies between clusters of random variables. Selected variables called 'gateway variables' are used to predict the conditional probabilistic dependency relations between clusters. The direction of conditional probabilistic dependencies between clusters are predicted by finding directed acyclic graph (DAG)-shaped dependency structure between the gateway variables. We show that our method shows meaningful prediction results in determining directions of conditional probabilistic dependencies between clusters.

Prediction of compressive strength of GGBS based concrete using RVM

  • Prasanna, P.K.;Ramachandra Murthy, A.;Srinivasu, K.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.691-700
    • /
    • 2018
  • Ground granulated blast furnace slag (GGBS) is a by product obtained from iron and steel industries, useful in the design and development of high quality cement paste/mortar and concrete. This paper investigates the applicability of relevance vector machine (RVM) based regression model to predict the compressive strength of various GGBS based concrete mixes. Compressive strength data for various GGBS based concrete mixes has been obtained by considering the effect of water binder ratio and steel fibres. RVM is a machine learning technique which employs Bayesian inference to obtain parsimonious solutions for regression and classification. The RVM is an extension of support vector machine which couples probabilistic classification and regression. RVM is established based on a Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. Compressive strength model has been developed by using MATLAB software for training and prediction. About 70% of the data has been used for development of RVM model and 30% of the data is used for validation. The predicted compressive strength for GGBS based concrete mixes is found to be in very good agreement with those of the corresponding experimental observations.

Robustness of model averaging methods for the violation of standard linear regression assumptions

  • Lee, Yongsu;Song, Juwon
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.2
    • /
    • pp.189-204
    • /
    • 2021
  • In a regression analysis, a single best model is usually selected among several candidate models. However, it is often useful to combine several candidate models to achieve better performance, especially, in the prediction viewpoint. Model combining methods such as stacking and Bayesian model averaging (BMA) have been suggested from the perspective of averaging candidate models. When the candidate models include a true model, it is expected that BMA generally gives better performance than stacking. On the other hand, when candidate models do not include the true model, it is known that stacking outperforms BMA. Since stacking and BMA approaches have different properties, it is difficult to determine which method is more appropriate under other situations. In particular, it is not easy to find research papers that compare stacking and BMA when regression model assumptions are violated. Therefore, in the paper, we compare the performance among model averaging methods as well as a single best model in the linear regression analysis when standard linear regression assumptions are violated. Simulations were conducted to compare model averaging methods with the linear regression when data include outliers and data do not include them. We also compared them when data include errors from a non-normal distribution. The model averaging methods were applied to the water pollution data, which have a strong multicollinearity among variables. Simulation studies showed that the stacking method tends to give better performance than BMA or standard linear regression analysis (including the stepwise selection method) in the sense of risks (see (3.1)) or prediction error (see (3.2)) when typical linear regression assumptions are violated.