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Abstract

This paper considers Bayes estimations of the small area means under Fay-Herriot
model with measurement errors. We provide empirical Bayes predictors of small area
means with the corresponding jackknifed mean squared prediction errors. Also we ob-
tain hierarchical Bayes predictors and the corresponding posterior standard deviations
using Gibbs sampling. Numerical studies are provided to illustrate our methods and
compare their efficiencies.

Keywords: Empirical Bayes, Fay-Herriot model, Gibbs sampler, hierarchical Bayes, jack-
knife method, mean squared prediction error, measurement error, small areas.

1. Introduction

Sample surveys are generally designed to provide estimates of totals or means for large
subpopulation (or domain). Such estimates are “direct” in the sense of using only the domain-
specific sample data, and the domain sample sizes are large enough to support reliable direct
estimates.

In recent years, demand for reliable estimates for small domains (small areas) has greatly
increased due to their growing use in formulating policies and programs, allocation of gov-
ernment funds, regional planning, marketing decisions at local level, income for small places,
and others. However, due to cost and operational considerations, it is seldom possible to ob-
tain a large enough overall sample size to support direct estimates for all domains of interest.
We use the term “small area” to denote any domain for which direct estimates of adequate
precision cannot be produced due to small domain-specific sample size.

It is often necessary to employ “indirect” estimates for small areas that can increase the
“effective” domain sample size by “borrowing strength” from related area through linking
models, using auxiliary data associated with the small areas. A compressive account of
model-based small area estimation is given by Rao (2003).

However, it may happen the situation in which the auxiliary data for use in small area
estimation may be measured with errors. For example, one might use auxiliary data from
another survey. Bolfarine et al. (1996) and Goo and Kim (2012) studied measurement error
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regression models in finite population sampling. Ghosh et al. (2006), Ghosh and Sinha (2007),
Torabi et al. (2010), Datta et al. (2010), and Ybarra and Lohr (2008) considered small area
models with covariates subject to measurement error.

In this paper, we focus on empirical Bayes (EB) and hierarchical Bayes (HB) estimation
for small areas under area-level Fay-Herriot (1979) models with measurement errors in the
area-level covariate values. The outline of the remaining section is as follows. In Section 2, we
provide EB estimators of small area means with the corresponding mean squared prediction
errors (MSPE) under Fay-Herriot measurement error model. Also we provide HB estimators
of small area means with measurement errors and the corresponding posterior standard
deviations (PSD) using Gibbs sampling. In Section 3, a numerical studies are provided to
illustrate the results of the preceding section. A simualtion study is conducted to compare
the performances of the EB and HB estimators.

2. Bayes estimation of small area means with measurement errors

We consider a basic area-level model, well known as the Fay and Herriot (1879) model,
when the area-level covariates in the model are subject to measurement errors. If the true
covariate vector X; for each area i is known, then the Fay-Herriot model is given by

yi = XIb+vi4e,i=1,..,m, (2.1)

where y; is a direct survey estimator of the area mean 6; with sampling error e; N (0,4;)
and known sampling variance v;, and 6; is modeled as 0; = X 1Tb + v; with model errors
v; nd (0,02) independent of e; for all 4. If the model parameters b and o2 are known, then
the best (or Bayes) predictor of 6; is given by

Oirrr = Yuyi + (1 — )X, (2.2)

where 7, = 02 /(02 + ;). A
Suppose now that X; is not known and that X, in (2.1) is replaced by an estimator X;

from an independent survey, where X, N (X;,C;) and C; is assumed to be known.

2.1. Empirical Bayes estimation

We consider empirical Bayes predictors of small area means with measurement errors.
Now, if we substitute X; for X; in (2.2), then the resulting substitution predictor, 6;g, is
worse than 6;pp in the sense of the mean squared prediction error (MSPE). Moreover, if
b'C;b > 02 +1);, then using 0,5 is worse than using the direct estimator (Ybarra and Lohr,
2008).

Now following the idea given in Datta et al. (2010) we obtain a pseudo-Bayes predictor
of 0; by estimating X; efficiently. We observe that both y; and X, provide information on
X ;, noting that y;| X; ~ N(Xin, o2 + ;) and XZ|XZ ~ N(X;,C;). Expressing the joint
density function f(y;, X;|X;) = f(ys|X:)f(X:|X,)) as a likelihood function L(X;) and
then maximizing L(X ;) with respect to X ;. The “score” equation is

(yi — X[ b)b

1(X,) Y

+C7 (X, - X;)=0. (2.3)

= 9X. log L(X ;)
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Solving (2.3) for X; we get the maximum likelihood estimator of X7 b as
X, b=35X,b+(1- 6y, (2.4)

where 0; = (62 + 9;)/ (62 + 9; + b’ C;b). Now, substituting Xin, given by (2.4), for X7b
in (2.2), we get the pseudo-Bayes predictor of 6;,

. AT
bipB = viyi + (1 —7)X; b, (2.5)
where v; = (02 + b7 C;b) /(02 + b" C;b + ;). )
Note that Ybarra and Lohr (2008) obtained the minimum MSPE predictor, 6;5s g, among
~T ~ T
all linear combination of y; and X; b of the form of a;y; + (1 — a;)X; b. It turns out that
the Ybarra-Lohr predictor 6;,,p is the same as the pseudo-Bayes predictor 6;pp.
A pseudo-empirical Bayes predictor is obtained by replacing b and o2 by consistent esti-
mators. To do this, we use modified least squares to estimate the parameters (Cheng and
Van Ness, 1999, pp. 85, 146). Let wyq, - - ,w,, be a set of finite weights bounded away from

N AT A
0. The estimated regression parameters b,, satisfy the equation > ", w;(X;X; — C;)b =
o w; Xy;, when the solution exists. Thus,

m

bu = > wi(X:X; —CO}Y 'Y wiXuy, (2.6)
=1 =1

estimates b if the inverse exists. Ybarra and Lohr (2008) showed that b, is a consistent
estimator of b as m—o00. Furthermore,

m

F2w) = (m-p) > {(yi - X

i=1

by)? —p; — b, C;by,} (2.7)

is a consistent estimator of 2.

The method of weighted least squares is typically used to estimate b in the Fay-Herriot
model, with w; = 1/(62 +1);). In our situation, we would like to use weights w; = 1/(c2 +
¥; + b7 C;b). In practice, we initially set w; = 1 and estimate b and o2 using (2.6) and (2.7).
We then substitute these estimates into the expression for the desired weights to obtain w;,
which is consistent for w;. If desired, this process can be iterated.

Then, let ¢ = (62, b™)T be an estiamtor of ¢ = (02, b")T with

cov(}) = (Vaflfg) ]‘i) +o(mY).

Assume that ¢ is independent of (X i» yi) and that the sixth central moments of ¢ are
o(m~1). Then

MSE(éiPB) = vy + (1- %)2 tr{(C; —|—XZX1T)Bm}

P2
(b Cib + 02 +1;)3
+ 2E{(1—%)%(b—b)TYC:ib+ o(m™1).

+ EG2+b Cb—o2-bTCib)?  (2.8)
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The mean squared error may be estimated by analytically obtaining estimators of the
terms in (2.8), as done in Prasad and Rao (1990), Datta and Lahiri (2000) and Datta et al.
(2005) for the Fay-Herriot estimator. In this approach, estimators are substituted for B
and the expected values in (2.8).

An alternative approach is to use the jackknife derived in Jiang et al. (2002) to estimate
the mean squared error. Under the conditions in the above equation and assuming that y;
and X; are normally distributed, we can write MSE(éipB) = My; + My;, where My; = 10,
and Mgi = E(é, — éi)Q.

A jackknife bias correction is used to estimate My; by

~ R m—1=~,. R
My = i + o Z(%‘%‘ = Fi(—) Vi) (2.9)

Jj=1

where the notation (—7) indicates an estimator of the same form but based on the dataset
without area j. We estimate Ms; by

M = 2= Z i) — 0:)? (2.10)

where éi(,j) = Yi(—jyi + (1= %(,j))j(?fr(,j). Then the jackknife estimator of MSE(0;pp)
is given by

mse(@ipp) = My + Moy
R m—1 = . .
= Y + o Z;(%l//i — Yi(=¥i) (2.11)
=
m—1<, . . o Ta A
t D Wiy + (=) X by} — 0.
j=1

2.2. Hierarchical Bayes estimation

We consider a hierarchical Bayesian framework to predict the small area means ;. To this

end, we begin with the following simple Fay-Herriot model with measurement errors:

L. y;|0; ind N(0;, ¥;), i =1,...,m, where 1); is known.

IL. 6;|b, 02 "% N(Xin,oz) and X;|X; " N(X;,C;), i = 1,...,m where C; is known.

I X, iid m(X;) o 1.

IV. b,02 are mutually independent with 7(b) < 1 and o2 ~ IG(a, /2, b,/2). Here IG(a,b)
denotes an inverse Gamma distribution with pdf f(z) « emp(—a/z)z(*b’l)l[wo].

The implementation of the Bayesian procedure is greatly facilitated by the MCMC numer-
ical integration technique, in particular the Gibbs sampler. This requires generating samples
from the full conditionals of each of #;, b, 02, and X; given the remaining parameters and
the data. The details are given below.
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Under the HB model, the joint posterior distribution is given by

7T(91,.. (gm,b 0' Xl,...,Xm|y,X1,...,Xm)

1 i — 0;)? m R
x exp|— = W} x (02)" % expl— x7Tb)?
i=1 v U i:l
1 & T % ay 23— (b, /241)
x expl— Z (X, —X)TC7 (X, — X,)] x exp—251(07) .

v

Then the full conditionals are obtained as follows:

(i) [0:]b, le,...,Xm,y,Xl,...,Xm]
! N[ (07! + 0,72y, yﬁo”XTb} (W' o, ) i=1, ,my
( )[b|0’ Xl,.. Xm7015--- myanly--me]
~N((Cm X X))o, 0: ), UEA(Z?ilXiXiT)’l);
(111)[ V|X1,.. Xm,é)l,.. Gm,b y,Xl,...,X }
~IG(3{>1 (6 —XTb) +ay}, metbe ),
(1 ) [X |91,.. 9m7b,UV7y,X17... X ]
TEN[(CT 4 0726bT)HCT X + 0:b), (C7H +02bb7 ) i=1, -

, M.

Using the Gibbs sampler, we obtain the HB estimators for small area means

E(6ly, X1,...,Xm) = E[E[6;b, V,Xl,...,Xm,y,f(l,...,Xmﬂy,Xl,...,Xm]
L (Ik)T ¢ (1K)
~ -1 —1,Yi XZ b
~ (Ld) Z Z 2(zk) (J"F 2(1k) );
I=1k=d+1 v Ov

where L > 2 independent sequences are generated, each of length 2d, the first d iterations
of each sequence are discarded. We have L xd simulated values for each parameter. And the
corresponding posterior variance is given by

(9|ya Xla ceey Xm)

[ [0 |b7 y,Xla"'aXm7an17"'7Xm]|y7X13“'aXm]
+V[E[6;]b, V,Xl,...,Xm,y,Xl,...,Xm]|y,X1,...,Xm]
L
(Ld)™"> Z )—1
I=1k=d+1
(Ik)T 3 (k)
1 o, XD,
+(Ld) ZZ ¢ ) (JJ“ Z2(lk) )
I=1k=d+1 " V g Ov

L (IR)T . (1F)
-1 -1, Y X, b 2
[(Ld) g E % 2(lk)) (E + W)]

l=1k=d+1
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3. Numerical studies

In this section we conduct the analysis of data set to illustrate our methods obtained in
previous section. We also perform a small simulation experiment to investigate the perfor-
mance of proposed estimators.

3.1. Data analysis

The U.S. Department of Health and Human Services (HHS) has a direct need for the
income data at the state level (the 50 states and the District of Columbia) for formulation
its energy assistance program to low income familes. Such estimates are provided to the
HHS annually by the U.S. Census Bureau.

Starting with income year 1974, the U.S. Census Bureau has computed model-based esti-
mates of median annual income for 4-person families by state using data from the decennial
censuses, March sample of the Current Population Survey (CPS), and estimates of per capita
income (PCI) from the Bureau of Economic Analysis (BEA).

In original data we have the following variables.

e y; = CPS estimates of 1989 4-person family median income

* ¢; = (SE of y;)*

e x; = census estimates of 1979 4-person family median income

Now we synthesize the data for illustrative purpose. We assume the the z; are unknown and
their estimates are available.

e I; = estimates of the x; from an independent survey

That is, &; = x; + 1; , where 7; w N(0,60), i« = 1,..., 51.

Now we provide the Bayes estimates of median income for 4-person families by state
using EB and HB procedures with measurement errors. Using the given data set (y;, %),
i = 1,...m, we calculate the pseudo-EB estimates and the corresponding jackknifed root
mean squared errors (RMSE). In the iterative procedures for estimating b and 62, we set
to zero for the value of 2 if 62 is estimated to be negative. To obtain the HB estimates,
we run 5 Gibbs chains of size 10,000 with a burn-in of the first 5,000. After burning out the
first half (to eliminate any possible instability in the initial generated samples), we use the
average principle and take the average of the HB estimates over the remaining sets to obtain
the final HB estimate. The same method is applied to calculate the corresponding posterior
standard deviations (PSD). The results are given in Table 3.1.

From Table 3.1, we can see that two Bayes estimates of the small area means are quite
close to each other. But from Table 3.1, it appears that the estimated standard errors given
by jackknife method are slightly unstable compared to those given by Gibbs sampling.

To check the performance of our estimates, we use the following four criteria to compare
the different estimates.

e average relative bias (ARB) = (51)~1 327! leizedl

i=1 cq
51 |ci—e; 2

e average squared relative bias (ASRB) = (51)7" Y/~ =

e average absolute bias (AAB) = (51)~! Z?il lei — eil

e average squared deviation (ASD) = (51)71 3270 (¢; — ¢;)?

Here ¢; and e; respectively denote the census and estimates for the i'* state (i = 1,...51).
The lower values of these measures would imply a better procedure. The values of the four
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criteria are provided in Table 3.2.
Table 3.2 indicates that the HB estimates are relatively better than the EB estimates
under all four criteria for this data set.

Table 3.1 EB and HB estimates of median 4-person family income

state X EB RMSE HB PSD

ME 37120 33256 0.588357 33439 0.181587
NH 46613 39332 0.079283 40131 0.191338
vT 40477 35024 0.404817 35451 0.178510
MA 48302 42061 0.336552 43409 0.189269
RI 40743 39389 0.079507 39860 0.189809
CcT 62462 45148 0.657888 45947 0.192483
NY 39397 40322 0.164851 40776 0.160282
NJ 48849 45698 0.707198 46721 0.181676
PA 37567 39711 0.110156 39882 0.160571
OH 37933 41284 0.260199 41735 0.167421
IN 31185 40904 0.223823 40942 0.179429
IL 38966 44706 0.615783 44631 0.164885
MI 39606 44246 0.567056 44276 0.162013
WI 38107 41338 0.266217 41492 0.173030
MN 36779 42535 0.388040 42841 0.182903
10 32923 39797 0.114904 30701 0.171984
MO 33700 39000 0.060069 39014 0.184392
ND 32972 36811 0.219594 36771 0.172268
SD 31538 33855 0.521652 33591 0.173608
NE 36424 38305 0.080305 38542 0.174971
KS 36011 39385 0.079393 39633 0.182735
DE 41499 41885 0.322510 41856 0.184519
MD 45329 46074 0.754058 46430 0.190758
DC 31116 39049 0.065240 38928 0.189243
VA 41226 40433 0.172625 41001 0.190302
WV 29640 36314 0.268916 35801 0.176279
NC 34799 35580 0.347085 35754 0.159257
SN 33477 35935 0.306579 35544 0.188925
GA 32923 37045 0.197431 37489 0.188925
FL 31573 37711 0.131591 37612 0.156486
KY 30941 35468 0.353176 35122 0.181168
TN 30172 35502 0.349204 35055 0.178198
AL 30368 35805 0.319034 35438 0.179574
MA 28617 32990 0.608796 32702 0.177689
AR 25842 32544 0.657919 32435 0.176412
LA 29181 38340 0.082710 38179 0.182470
OK 29374 37011 0.199861 37185 0.185778
TX 31571 40092 0.143445 39141 0.164732
MT 31369 37208 0.175106 36491 0.180914
ID 30815 35911 0.307427 35480 0.175560
WY 35808 43472 0.485885 43308 0.183417
CO 38321 42021 0.336509 41772 0.181983
NM 25743 34820 0.419200 34315 0.182573
AZ 33239 39047 0.061864 39032 0.190382
uT 33317 38455 0.073142 38428 0.181401
NE 35231 43168 0.455658 42579 0.179635
WA 41310 43068 0.442200 43146 0.175561
OR 36071 40355 0.166401 40477 0.180255
CA 39775 43635 0.501622 43429 0.160654
AK 43115 53798 1.542975 53420 0.184254
HI 44416 44012 0.546514 44221 0.190274

Table 3.2 Comparative measures
method  ARB ASRB AAB ASD

EB 0.227530 0.069202 0.503357 0.349764
HB 0.218647 0.063862 0.482844 0.322999

3.2. Simulation study

We conduct a small simulation experiment with m = 10 to investigate the performance
of the proposed estimators. First the z; are generated from a N(5,32). Then we generate
0; = 1+ 3z; + v; where v; ~ N(0,02) with 02 = 1,2,4 and y; = 6; + ¢; where ¢; ~ N(0,;)

v

with ¢; = 0.5,1,2. The &; are generated by &; = z; + n; where n; ~ N(0, ¢;) with ¢; = 1, 3.
So we have 18 cases of parameter values.



892 You Mee Goo - Dal Ho Kim

For each case we take R = 5,000 iterations for each area i after deleting a burn-in of the
first 2,000 samples. Then we obtain the true small area means 91@, the pseudo-EB estimates
éfB(T) and HB estimates éZHB(T), i=1,...m,r=1,.., R. In calculating HB estimates, we
use the small hyperparameter values of a,, = b, = 0.005 for the diffused Gamma prior.

The empirical MSPE of 875 and §77 are then calculated as

7

R
EMSPE(FP) = (R)flz (B _ g )2,
r=1

and R
EMSPEOIP) = (R)7' Y (6P — ¢ 12,

r=1

Table 3.3(a)-(c) shows that in terms of empirical MSPE, 877 is slightly more efficient than
OFB. The different values of m was also tried in simulation study, but the results were very
similar.

Table 3.3(a) Empirical MSPE of §FF and §7F with 02 =1

;=1 ci =3
m ¥;=0.5 Pi=1 Pi=2 ¥;=0.5 Pi=1 [ Pi=2
EB HB EB HB EB HB EB HB EB HB EB HB
1 0.4909  0.4899 0.9004 0.8949 1.7970 1.7996  0.4778 0.4744 1.0937  1.0827 1.9077 1.8741
2 0.5126  0.5068 0.9170 0.9128 1.9126 1.8463 0.4984 0.5011 0.9919 1.0017 1.7511 1.7078
3 0.4672 0.4610 0.9455 0.9263 1.7100 1.6562 0.5020 0.5003 1.0083 0.9864 1.8389 1.7709
4 0.5049 0.5007 0.9746  0.9538 1.7958 1.7781 0.4819 0.4825 0.9786  0.9870 1.8707 1.8012
5 0.5088 0.5055 0.8708 0.8696  2.0249 1.9537 0.4999 0.4962 0.9864 0.9793 1.9687  1.9622
6 0.4725 0.4692 0.9629  0.9609 1.7166 1.6802 0.5107 0.5072 0.9653  0.9447 1.8931 1.9155
7 0.5082  0.5040 0.9602  0.9687 1.7669 1.7295  0.4981 0.4983  0.9009 0.9017 1.9885 1.9678
8 0.4945 0.4927 0.9275 0.9257 1.8181 1.7669 0.4846 0.4819 0.9723 0.9776 1.8313 1.7975
9 0.4481 0.4462  0.9337 0.9254 1.6254 1.5876 0.5110 0.5089 0.9798 0.9742 1.8540 1.8167
10 0.4904 0.4850 0.9883 0.9757 1.7375 1.7255 0.4806 0.4732 1.0096 1.0152 1.9218 1.8687
Table 3.3(b) Empirical MSPE of 77 and 6% with 02 = 2
c; =1 c; =
m };=0.5 =1 D=2 };=0.5 D=1 D=2
EB HB EB HB EB HB EB 0B EB HB EB HB
1 0.4674  0.4654 1.0494 1.0343 1.7775 1.7555 0.4784  0.4755 1.0930 1.0819 1.9092 1.8776
2 0.4885 0.4914 0.9673  0.9747 1.6511 1.6114 0.4986 0.5017 0.9934 1.0052 1.7544 1.7155
3 0.4934 0.4913 0.9722  0.9530 1.7064 1.6440 0.5023 0.5009 1.0099 0.9898 1.8415 1.7750
4 0.4766  0.4758  0.9521 0.9579 1.7567 1.7010 0.4820 0.4826 0.9806  0.9893 1.8736 1.8090
5 0.4946  0.4890 0.9472  0.9431 1.8354 1.8184 0.5003 0.4968 0.9865 0.9808 1.9757  1.9681
6 0.5005 0.4984 0.9372  0.9220 1.7828 1.8023 0.5112 0.5084 0.9661 0.9477 1.8986 1.9251
7 0.4865 0.4870 0.8750 0.8785 1.8414 1.8446  0.4983 0.4990 0.9031 0.9035 1.9954 1.9778
8 0.4787 0.4752 0.9607 0.9638 1.7153 1.6912 0.4848 0.4825 0.9735 0.9797 1.8387 1.8104
9 0.5058 0.5043 0.9494  0.9436 1.7079 1.6755 0.5116 0.5105 0.9809 0.9770 1.8566 1.8222
10 0.4704 0.4638 0.9720 0.9769 1.7936 1.7588  0.4805 0.4731 1.0105 1.0158 1.9249 1.8756
Table 3.3(c) Empirical MSPE of 678 and 67F with o2 =4
c; =1 c; =3
m =05 =1 =2 .=0.5 =1 =2
EB HB EB HB EB HB EB HB EB HB EB HB
0.4711 0.4697 1.0562 1.0409 .8069 1.7906  0.4792 0.4773 1.0923 1.0817 1.9129 1.8851
0.4917 0.4952 0.9852  0.9922 .6872 1.6583 0.4988 0.5025 0.9963 1.0097 1.7602 1.7276
0.4969  0.4961 0.9839  0.9699 .7375 1.6815 0.5030 0.5020 1.0125  0.9947 1.8456 1.7830
0.4787 0.4785 0.9633 0.9717 .8014 1.7502 0.4823 0.4828 0.9835 0.9931 1.8801 1.8249
0.4966  0.4915 0.9561 0.9527 .8731 1.8612 0.5008 0.4979 0.9874 0.9836 1.9872 1.9786
0.5044  0.5040 0.9445 0.9361 .8275 1.8511 0.5120 0.5102 0.9670 0.9524 1.9088 1.9398
1

0.4905 0.4915 0.8820 0.8883
0.4794 0.4782 0.9687 0.9741
0.5103  0.5097  0.9597 0.9584
0.4712  0.4664 0.9790 0.9873

.8810 .8949  0.4988  0.4997 0.9059 0.9061 2.0047  1.9940
7573 1.7449 0.4852 0.4834 0.9751 0.9816  1.8492  1.8281
7526  1.7258 0.5128 0.5127 0.9826 0.9811 1.8637 1.8351
.8298 1.8045 0.4805 0.4736 1.0118 1.0177 1.9301 1.8868

5000 U WN -
e T Y =S uy SOy
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4. Summary and conclusion

We have derived EB and HB predictors of a small area means under Fay-Herriot medel
with measurement errors. Our numerical studies show that HB predictors are slightly better
than the EB predictors in the closeness of census values. Also in terms of empirical MSPE,
HB predictors are are slightly efficient than the EB predictors.
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