• Title/Summary/Keyword: Bayesian Prediction

Search Result 304, Processing Time 0.03 seconds

Software Quality Classification using Bayesian Classifier (베이지안 분류기를 이용한 소프트웨어 품질 분류)

  • Hong, Euy-Seok
    • Journal of Information Technology Services
    • /
    • v.11 no.1
    • /
    • pp.211-221
    • /
    • 2012
  • Many metric-based classification models have been proposed to predict fault-proneness of software module. This paper presents two prediction models using Bayesian classifier which is one of the most popular modern classification algorithms. Bayesian model based on Bayesian probability theory can be a promising technique for software quality prediction. This is due to the ability to represent uncertainty using probabilities and the ability to partly incorporate expert's knowledge into training data. The two models, Na$\ddot{i}$veBayes(NB) and Bayesian Belief Network(BBN), are constructed and dimensionality reduction of training data and test data are performed before model evaluation. Prediction accuracy of the model is evaluated using two prediction error measures, Type I error and Type II error, and compared with well-known prediction models, backpropagation neural network model and support vector machine model. The results show that the prediction performance of BBN model is slightly better than that of NB. For the data set with ambiguity, although the BBN model's prediction accuracy is not as good as the compared models, it achieves better performance than the compared models for the data set without ambiguity.

Bayesian Neural Network with Recurrent Architecture for Time Series Prediction

  • Hong, Chan-Young;Park, Jung-Hun;Yoon, Tae-Sung;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.631-634
    • /
    • 2004
  • In this paper, the Bayesian recurrent neural network (BRNN) is proposed to predict time series data. Among the various traditional prediction methodologies, a neural network method is considered to be more effective in case of non-linear and non-stationary time series data. A neural network predictor requests proper learning strategy to adjust the network weights, and one need to prepare for non-linear and non-stationary evolution of network weights. The Bayesian neural network in this paper estimates not the single set of weights but the probability distributions of weights. In other words, we sets the weight vector as a state vector of state space method, and estimates its probability distributions in accordance with the Bayesian inference. This approach makes it possible to obtain more exact estimation of the weights. Moreover, in the aspect of network architecture, it is known that the recurrent feedback structure is superior to the feedforward structure for the problem of time series prediction. Therefore, the recurrent network with Bayesian inference, what we call BRNN, is expected to show higher performance than the normal neural network. To verify the performance of the proposed method, the time series data are numerically generated and a neural network predictor is applied on it. As a result, BRNN is proved to show better prediction result than common feedforward Bayesian neural network.

  • PDF

Leave-one-out Bayesian model averaging for probabilistic ensemble forecasting

  • Kim, Yongdai;Kim, Woosung;Ohn, Ilsang;Kim, Young-Oh
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.1
    • /
    • pp.67-80
    • /
    • 2017
  • Over the last few decades, ensemble forecasts based on global climate models have become an important part of climate forecast due to the ability to reduce uncertainty in prediction. Moreover in ensemble forecast, assessing the prediction uncertainty is as important as estimating the optimal weights, and this is achieved through a probabilistic forecast which is based on the predictive distribution of future climate. The Bayesian model averaging has received much attention as a tool of probabilistic forecasting due to its simplicity and superior prediction. In this paper, we propose a new Bayesian model averaging method for probabilistic ensemble forecasting. The proposed method combines a deterministic ensemble forecast based on a multivariate regression approach with Bayesian model averaging. We demonstrate that the proposed method is better in prediction than the standard Bayesian model averaging approach by analyzing monthly average precipitations and temperatures for ten cities in Korea.

Bayesian Typhoon Track Prediction Using Wind Vector Data

  • Han, Minkyu;Lee, Jaeyong
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.3
    • /
    • pp.241-253
    • /
    • 2015
  • In this paper we predict the track of typhoons using a Bayesian principal component regression model based on wind field data. Data is obtained at each time point and we applied the Bayesian principal component regression model to conduct the track prediction based on the time point. Based on regression model, we applied to variable selection prior and two kinds of prior distribution; normal and Laplace distribution. We show prediction results based on Bayesian Model Averaging (BMA) estimator and Median Probability Model (MPM) estimator. We analysis 8 typhoons in 2006 using data obtained from previous 6 years (2000-2005). We compare our prediction results with a moving-nest typhoon model (MTM) proposed by the Korea Meteorological Administration. We posit that is possible to predict the track of a typhoon accurately using only a statistical model and without a dynamical model.

Bayesian and Empirical Bayesian Prediction Analysis for Future Observation

  • Jeong Hwan Ko
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.2
    • /
    • pp.465-471
    • /
    • 1997
  • This paper deals with the problems of obtaining some Bayesian and empirical Bayesian Predictive densities and prediction intervals of a future observation $X_{(\tau+\gamma)}$ in the Rayleigh distribution. Using an inverse gamma prior distribution, some prodictive densities and prodiction intervals are proposed and studied. Also the behaviors of the proposed results are examined via numerical examples.

  • PDF

Shear strength prediction for SFRC and UHPC beams using a Bayesian approach

  • Cho, Hae-Chang;Park, Min-Kook;Hwang, Jin-Ha;Kang, Won-Hee;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.503-514
    • /
    • 2020
  • This study proposes prediction models for the shear strength of steel fiber reinforced concrete (SFRC) and ultra-high-performance fiber reinforced concrete (UHPC) beams using a Bayesian parameter estimation approach and a collected experimental database. Previous researchers had already proposed shear strength prediction models for SFRC and UHPC beams, but their performances were limited in terms of their prediction accuracies and the applicability to UHPC beams. Therefore, this study adopted a statistical approach based on a collected database to develop prediction models. In the database, 89 and 37 experimental data for SFRC and UHPC beams without stirrups were collected, respectively, and the proposed equations were developed using the Bayesian parameter estimation approach. The proposed models have a simplified form with important parameters, and in comparison to the existing prediction models, provide unbiased high prediction accuracy.

A Study on the Bayesian Recurrent Neural Network for Time Series Prediction (시계열 자료의 예측을 위한 베이지안 순환 신경망에 관한 연구)

  • Hong Chan-Young;Park Jung-Hoon;Yoon Tae-Sung;Park Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1295-1304
    • /
    • 2004
  • In this paper, the Bayesian recurrent neural network is proposed to predict time series data. A neural network predictor requests proper learning strategy to adjust the network weights, and one needs to prepare for non-linear and non-stationary evolution of network weights. The Bayesian neural network in this paper estimates not the single set of weights but the probability distributions of weights. In other words, the weights vector is set as a state vector of state space method, and its probability distributions are estimated in accordance with the particle filtering process. This approach makes it possible to obtain more exact estimation of the weights. In the aspect of network architecture, it is known that the recurrent feedback structure is superior to the feedforward structure for the problem of time series prediction. Therefore, the recurrent neural network with Bayesian inference, what we call Bayesian recurrent neural network (BRNN), is expected to show higher performance than the normal neural network. To verify the proposed method, the time series data are numerically generated and various kinds of neural network predictor are applied on it in order to be compared. As a result, feedback structure and Bayesian learning are better than feedforward structure and backpropagation learning, respectively. Consequently, it is verified that the Bayesian reccurent neural network shows better a prediction result than the common Bayesian neural network.

Travel Time Prediction Algorithm Based on Time-varying Average Segment Velocity using $Na{\ddot{i}}ve$ Bayesian Classification ($Na{\ddot{i}}ve$ Bayesian 분류화 기법을 이용한 시간대별 평균 구간 속도 기반 주행 시간 예측 알고리즘)

  • Um, Jung-Ho;Chowdhury, Nihad Karim;Lee, Hyun-Jo;Chang, Jae-Woo;Kim, Yeon-Jung
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.3
    • /
    • pp.31-43
    • /
    • 2008
  • Travel time prediction is an indispensable to many advanced traveler information systems(ATIS) and intelligent transportation systems(ITS). In this paper we propose a method to predict travel time using $Na{\ddot{i}}ve$ Bayesian classification method which has exhibited high accuracy and processing speed when applied to classily large amounts of data. Our proposed prediction algorithm is also scalable to road networks with arbitrary travel routes. For a given route, we consider time-varying average segment velocity to perform more accuracy of travel time prediction. We compare the proposed method with the existing prediction algorithms like link-based prediction algorithm [1] and Micro T* algorithm [2]. It is shown from the performance comparison that the proposed predictor can reduce MARE (mean absolute relative error) significantly, compared with the existing predictors.

  • PDF

Bayesian Prediction Analysis for the Exponential Model Under the Censored Sample with Incomplete Information

  • Kim, Yeung-Hoon;Ko, Jeong-Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.1
    • /
    • pp.139-145
    • /
    • 2002
  • This paper deals with the problem of obtaining the Bayesian predictive density function and the prediction intervals for a future observation and the p-th order statistics of n future observations for the exponential model under the censored sampling with incomplete information.

  • PDF

Bayesian Prediction of Exponentiated Weibull Distribution based on Progressive Type II Censoring

  • Jung, Jinhyouk;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.6
    • /
    • pp.427-438
    • /
    • 2013
  • Based on progressive Type II censored sampling which is an important method to obtain failure data in a lifetime study, we suggest a very general form of Bayesian prediction bounds from two parameters exponentiated Weibull distribution using the proper general prior density. For this, Markov chain Monte Carlo approach is considered and we also provide a simulation study.