• Title/Summary/Keyword: Bayes theorem

Search Result 47, Processing Time 0.034 seconds

Study on Risk Priority for TBM Tunnel Collapse based on Bayes Theorem through Case Study (사례분석을 통한 베이즈 정리 기반 TBM 터널 붕괴 리스크 우선순위 도출 연구)

  • Kwon, Kibeom;Kang, Minkyu;Hwang, Byeonghyun;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.785-791
    • /
    • 2023
  • Risk management is essential for preventing accidents arising from uncertainties in TBM tunnel projects, especially concerning managing the risk of TBM tunnel collapse, which can cause extensive damage from the tunnel face to the ground surface. In addition, prioritizing risks is necessary to allocate resources efficiently within time and cost constraints. Therefore, this study aimed to establish a TBM risk database through case studies of TBM accidents and determine a risk priority for TBM tunnel collapse using the Bayes theorem. The database consisted of 87 cases, dealing with three accidents and five geological sources. Applying the Bayes theorem to the database, it was found that fault zones and weak ground significantly increased the probability of tunnel collapse, while the other sources showed low correlations with collapse. Therefore, the risk priority for TBM tunnel collapse, considering geological sources, is as follows: 1) Fault zone, 2) Weak ground, 3) Mixed ground, 4) High in-situ stress, and 5) Expansive ground. In practice, the derived risk priority can serve as a valuable reference for risk management, enhancing the safety and efficiency of TBM construction. It provides guidance for developing appropriate countermeasure plans and allocating resources effectively to mitigate the risk of TBM tunnel collapse.

Forecasting of Various Air Pollutant Parameters in Bangalore Using Naïve Bayesian

  • Shivkumar M;Sudhindra K R;Pranesha T S;Chate D M;Beig G
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.196-200
    • /
    • 2024
  • Weather forecasting is considered to be of utmost important among various important sectors such as flood management and hydro-electricity generation. Although there are various numerical methods for weather forecasting but majority of them are reported to be Mechanistic computationally demanding due to their complexities. Therefore, it is necessary to develop and build models for accurately predicting the weather conditions which are faster as well as efficient in comparison to the prevalent meteorological models. The study has been undertaken to forecast various atmospheric parameters in the city of Bangalore using Naïve Bayes algorithms. The individual parameters analyzed in the study consisted of wind speed (WS), wind direction (WD), relative humidity (RH), solar radiation (SR), black carbon (BC), radiative forcing (RF), air temperature (AT), bar pressure (BP), PM10 and PM2.5 of the Bangalore city collected from Air Quality Monitoring Station for a period of 5 years from January 2015 to May 2019. The study concluded that Naive Bayes is an easy and efficient classifier that is centered on Bayes theorem, is quite efficient in forecasting the various air pollution parameters of the city of Bangalore.

A novel nomogram of naïve Bayesian model for prevalence of cardiovascular disease

  • Kang, Eun Jin;Kim, Hyun Ji;Lee, Jea Young
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.3
    • /
    • pp.297-306
    • /
    • 2018
  • Cardiovascular disease (CVD) is the leading cause of death worldwide and has a high mortality rate after onset; therefore, the CVD management requires the development of treatment plans and the prediction of prevalence rates. In our study, age, income, education level, marriage status, diabetes, and obesity were identified as risk factors for CVD. Using these 6 factors, we proposed a nomogram based on a $na{\ddot{i}}ve$ Bayesian classifier model for CVD. The attributes for each factor were assigned point values between -100 and 100 by Bayes' theorem, and the negative or positive attributes for CVD were represented to the values. Additionally, the prevalence rate can be calculated even in cases with some missing attribute values. A receiver operation characteristic (ROC) curve and calibration plot verified the nomogram. Consequently, when the attribute values for these risk factors are known, the prevalence rate for CVD can be predicted using the proposed nomogram based on a $na{\ddot{i}}ve$ Bayesian classifier model.

IMPLEMENTATION OF DATA ASSIMILATION METHODOLOGY FOR PHYSICAL MODEL UNCERTAINTY EVALUATION USING POST-CHF EXPERIMENTAL DATA

  • Heo, Jaeseok;Lee, Seung-Wook;Kim, Kyung Doo
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.619-632
    • /
    • 2014
  • The Best Estimate Plus Uncertainty (BEPU) method has been widely used to evaluate the uncertainty of a best-estimate thermal hydraulic system code against a figure of merit. This uncertainty is typically evaluated based on the physical model's uncertainties determined by expert judgment. This paper introduces the application of data assimilation methodology to determine the uncertainty bands of the physical models, e.g., the mean value and standard deviation of the parameters, based upon the statistical approach rather than expert judgment. Data assimilation suggests a mathematical methodology for the best estimate bias and the uncertainties of the physical models which optimize the system response following the calibration of model parameters and responses. The mathematical approaches include deterministic and probabilistic methods of data assimilation to solve both linear and nonlinear problems with the a posteriori distribution of parameters derived based on Bayes' theorem. The inverse problem was solved analytically to obtain the mean value and standard deviation of the parameters assuming Gaussian distributions for the parameters and responses, and a sampling method was utilized to illustrate the non-Gaussian a posteriori distributions of parameters. SPACE is used to demonstrate the data assimilation method by determining the bias and the uncertainty bands of the physical models employing Bennett's heated tube test data and Becker's post critical heat flux experimental data. Based on the results of the data assimilation process, the major sources of the modeling uncertainties were identified for further model development.

Improvement in probabilistic drought prediction method using Bayes' theorem (베이즈이론을 이용한 가뭄 확률 전망 기법 고도화)

  • Kim, Daeho;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.153-153
    • /
    • 2020
  • 우리나라에선 크고 작은 가뭄 피해가 자주 일어나고 있으며 최근엔 유래 없는 다년가뭄이 발생하면서 가뭄에 대한 경각심이 커지고 있다. 가뭄에 적절하게 대응하여 피해를 경감시키기 위해서는 신뢰도 높은 가뭄 예측이 선행되어야 한다. 이에 본 연구는 앙상블 예측과 베이즈이론(Bayes' theorem)을 수문학적 가뭄지수 중 하나인 SRI(Standardized Runoff Index)에 적용해 가뭄 확률 전망을 실시했으며 이를 EDP(Ensemble Drought Prediction)라고 칭하였다. 국내 8개 댐유역에서 EDP를 생성하고 개선하는 과정은 다음과 같이 진행된다. 우선 TANK모형을 활용한 1개월 선행 유량 예측(Ensemble Streamflow Prediction, ESP)의 결과를 SRI로 변환하여 EDP 확률분포를 생성한다. 그런 다음, EDP를 개선하기 위해 그 기초인 ESP에서 미흡한 토양수분 초기조건을 보완하고자 베이즈이론을 활용했다. APCC(APEC Climate Center)의 위성 관측 SMI(Soil Moisture Index) 자료로 SRI와의 회귀식을 구축, 이를 우도함수로 정의해 사전 EDP 분포를 업데이트한 EDP+ 확률분포를 생성했다. 그 결과, EDP와 EDP+ 모두 심도가 깊은 가뭄을 전망할수록 예측력이 기후학적 예측보다 좋지 않았다. 그럼에도 우도함수로 사용한 회귀식의 정확도가 높을수록 EDP+의 정확도도 향상되는 경향이 나타났으며, 이는 베이즈이론을 사용한다면 가뭄 확률 전망을 개선할 수 있다는 것을 의미하고 있다. 하지만, 확정 전망 정확도는 확률 전망 정확도와는 관계가 없었는데 이는 확정 전망과 확률 전망이 본질적으로 다르기 때문인 것으로 사료된다.

  • PDF

Feature Voting for Object Localization via Density Ratio Estimation

  • Wang, Liantao;Deng, Dong;Chen, Chunlei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6009-6027
    • /
    • 2019
  • Support vector machine (SVM) classifiers have been widely used for object detection. These methods usually locate the object by finding the region with maximal score in an image. With bag-of-features representation, the SVM score of an image region can be written as the sum of its inside feature-weights. As a result, the searching process can be executed efficiently by using strategies such as branch-and-bound. However, the feature-weight derived by optimizing region classification cannot really reveal the category knowledge of a feature-point, which could cause bad localization. In this paper, we represent a region in an image by a collection of local feature-points and determine the object by the region with the maximum posterior probability of belonging to the object class. Based on the Bayes' theorem and Naive-Bayes assumptions, the posterior probability is reformulated as the sum of feature-scores. The feature-score is manifested in the form of the logarithm of a probability ratio. Instead of estimating the numerator and denominator probabilities separately, we readily employ the density ratio estimation techniques directly, and overcome the above limitation. Experiments on a car dataset and PASCAL VOC 2007 dataset validated the effectiveness of our method compared to the baselines. In addition, the performance can be further improved by taking advantage of the recently developed deep convolutional neural network features.

A Computer Code Development for Updating Reliability Data Using Bayes' Theorem and Its Application (Bayes정리를 이용한 신뢰도 자료 평가용 전산코드 개발 및 응용)

  • Won-Guk Hwang;Kun Joong Yoo
    • Nuclear Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.41-49
    • /
    • 1983
  • A computer code, BERD (Bayesian Estimation of Reliability Data), has been developed and tested in order to update the data for the reliability analysis of safety related systems in a specific nuclear power plant. The code has been used to derive the plant-specific data for reliability analysis of the auxiliary feedwater system of a pressurized water reactor. The prior information for components selected was taken from the U.S. Reactor Safety Study, WASH-1400, and the operating experiences from published licensee event reports. The results show that the updated data are well fitted to log-normal distribution curves and the error factors are reduced significantly.

  • PDF

Likelihood Estimation Using Continuous-Time Markov Channels for Cognitive Radio Networks in Wireless LAN

  • Oo, Thant Zin;Thar, Kyi;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.262-264
    • /
    • 2012
  • Dynamic spectrum access and cognitive radio is a viable solution to solve congestion in ISM band. The dynamic environment of multi-channel wireless LAN is modeled by using continuous time Markov process. Bayes theorem is applied to infer channel access decisions dynamically to ensure current data transmission is switched to only likely candidate channels.

ACCURACY CURVES: AN ALTERNATIVE GRAPHICAL REPRESENTATION OF PROBABILITY DATA

  • Detrano Robert
    • 대한예방의학회:학술대회논문집
    • /
    • 1994.02b
    • /
    • pp.150-153
    • /
    • 1994
  • Receiver operating characteristic (ROC) curves have been frequently used to compare probability models applied to medical problems. Though the curves are a measure of the discriminatory power of a model. they do not reflect the model's accuracy. A supplementary accuracy curve is derived which will be coincident with the ROC curve if the model is reliable. will be above the ROC curve if the model's probabilities are too high or below if they are too low. A clinical example of this new graphical presentation is given.

  • PDF

ON-LINE ESTIMATION PROCEDURES OF DIGITAL FILTER TYPE FOR REVERBERATION CHARACTERISTICS IN CLOSED ACOUSTIC SYSTEMS BASED ON NOISY OBSERVATION

  • Hiromitsu, Seijiro;Ohta, Mitsuo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.680-685
    • /
    • 1994
  • The acoustic phenomena in the actual sound systems involve a variety of compound problems. In this paper, the well-known Bayes' theorem is first employed and expanded into orthonormal and non-orthonomal series forms matched to the digital processing of lower and higher order statistical informations and the noisy observations. Proposed on-line algorithms of digital filter type are applied to the actual state estimation for a reverberation characteristics in a room under contamination of background noises.

  • PDF