• Title/Summary/Keyword: Bayes rule

Search Result 61, Processing Time 0.018 seconds

Bayes Stopping Rule for MAC Scheme Wireless Sensor Networks (무선 센서 망에서 MAC 방식을 위한 Bayes 중지 규칙)

  • Park, Jin-Kyung;Choi, Cheon-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.7
    • /
    • pp.53-61
    • /
    • 2008
  • Consider a typical wireless sensor network in which stem nodes form the backbone network of mesh topology while each stem node together with leaf nodes in its vicinity forms a subnetwork of star topology. In such a wireless sensor network, we must heed the following when we design a MAC scheme supporting the packet delivery from a leaf node to a stem node. First, leaf nodes are usually battery-powered and it is difficult to change or recharge their batteries. Secondly, a wireless sensor network is often deployed to collect and update data periodically. Late delivery of a data segment by a sensor node causes the sink node to defer data processing and the data segment itself to be obsolete. Thirdly, extensive signaling is extremely limited and complex computation is hardly supported. Taking account of these facts, a MAC scheme must be able to save energy and support timeliness in packet delivery while being simple and robust as well. In this paper, we propose a version of ALOHA as a MAC scheme for a wireless sensor network. While conserving the simplicity and robustness of the original version of ALOHA, the proposed version of ALOHA possesses a distinctive feature that a sensor node decides between stop and continuation prior to each delivery attempt for a packet. Such a decision needs a stopping rule and we suggest a Bayes stopping rule. Note that a Bayes stopping rule minimizes the Bayes risk which reflects the energy, timeliness and throughput losses. Also, a Bayes stopping rule is practical since a sensor node makes a decision only using its own history of delivery attempt results and the prior information about the failure in delivery attempt. Numerical examples confirm that the proposed version of ALOHA employing a Bayes stopping rule is a useful MAC scheme in the severe environment of wireless sensor network.

Development of Bayes' rule education tool with Excel Macro (엑셀 매크로기능을 이용한 베이즈 정리 교육도구 개발)

  • Choi, Hyun-Seok;Ha, Jeong-Cheol
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.5
    • /
    • pp.905-912
    • /
    • 2012
  • We are dealing with the Bayes' rule education tool with Excel Macro and its usage example. When an event occurs, we are interested in whether it does under certain conditions or not. In this case, we use the Bayes' rule to calculate the probability. Bayes' rule is very useful in making decision based on newly obtained statistical information. We introduce an efficient self-teaching educational tool developed to help the learners understand the Bayes' rule through intermediate steps and descriptions. The concept and examples of intermediate steps such as conditional probability, multiplication rule, law of total probability, prior probability and posterior probability could be acquired through step-by-step learning. All the processes leading to result are given with diagrams and detailed descriptions. By just clicking the execution button, users could get the results in one screen.

A Bayesian Diagnostic Measure and Stopping Rule for Detecting Influential Observations in Discriminant Analysis

  • Kim, Myung-Cheol;Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.3
    • /
    • pp.337-350
    • /
    • 2000
  • This paper suggests a new diagnostic measure and a stopping rule for detecting influential observations in multiple discriminant analysis (MDA). It is developed from a Bayesian point of view using a default Bayes factor obtained from the fractional Bayes factor methodology. The Bayes factor is taken as a discriminatory information in MDA. It is shown that the effect of an observation over the discriminatory information is fully explained by the diagnostic measure. Based on the measure, we suggest a stopping rule for detecting influential observations in a given training sample. As a tool for interpreting the measure a graphical method is sued. Performance of the method is used. Performance of the method is examined through two illustrative examples.

  • PDF

Excel macro for applying Bayes' rule (베이즈 법칙의 활용을 위한 엑셀 매크로)

  • Kim, Jae-Hyun;Baek, Hoh-Yoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1183-1197
    • /
    • 2011
  • The prior distribution is the probability distribution we have before observing data. Using Bayes' rule, we can compute the posterior distribution, the new probability distribution, after observing data. Computing the posterior distribution is much easier than before by using Excel VBA macro. In addition, we can conveniently compute the successive updating posterior distributions after observing the independent and sequential outcomes. In this paper we compose some Excel VBA macros for applying Bayes' rule and give some examples.

A Bayes Rule for Determining the Number of Common Factors in Oblique Factor Model

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.1
    • /
    • pp.95-108
    • /
    • 2000
  • Consider the oblique factor model X=Af+$\varepsilon$, with defining relation $\Sigma$$\Phi$Λ'+Ψ. This paper is concerned with suggesting an optimal Bayes criterion for determining the number of factors in the model, i.e. dimension of the vector f. The use of marginal likelihood as a method for calculating posterior probability of each model with given dimension is developed under a generalized conjugate prior. Then based on an appropriate loss function, a Bayes rule is developed by use of the posterior probabilities. It is shown that the approach is straightforward to specify distributionally and to imploement computationally, with output readily adopted for constructing required cirterion.

  • PDF

Generalized Bayes estimation for a SAR model with linear restrictions binding the coefficients

  • Chaturvedi, Anoop;Mishra, Sandeep
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.4
    • /
    • pp.315-327
    • /
    • 2021
  • The Spatial Autoregressive (SAR) models have drawn considerable attention in recent econometrics literature because of their capability to model the spatial spill overs in a feasible way. While considering the Bayesian analysis of these models, one may face the problem of lack of robustness with respect to underlying prior assumptions. The generalized Bayes estimators provide a viable alternative to incorporate prior belief and are more robust with respect to underlying prior assumptions. The present paper considers the SAR model with a set of linear restrictions binding the regression coefficients and derives restricted generalized Bayes estimator for the coefficients vector. The minimaxity of the restricted generalized Bayes estimator has been established. Using a simulation study, it has been demonstrated that the estimator dominates the restricted least squares as well as restricted Stein rule estimators.

Optimal Selection of Populations for Units in a System

  • Kim, Woo-Chul
    • Journal of the Korean Statistical Society
    • /
    • v.9 no.2
    • /
    • pp.135-144
    • /
    • 1980
  • A problem of choosing units for the series system and the 1-out-of-2 system from k available brands is treated from a decision-theoretic points of view. It is assumed that units from each brand have exponentially distributed life lengths, and that the loss functions are inversely proportional to the reliability of the system. For the series system the 'natural' rule is shown to be optimal. For the 1-out-of-2 system, the Bayes rule wrt the natural conjugate prior is derived and teh constants to implement the Bayes rule are given.

  • PDF

The Method to Measure Saliency Values for Salient Region Detection from an Image

  • Park, Seong-Ho;Yu, Young-Jung
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.1
    • /
    • pp.55-58
    • /
    • 2011
  • In this paper we introduce an improved method to measure saliency values of pixels from an image. The proposed saliency measure is formulated using local features of color and a statistical framework. In the preprocessing step, rough salient pixels are determined as the local contrast of an image region with respect to its neighborhood at various scales. Then, the saliency value of each pixel is calculated by Bayes' rule using rough salient pixels. The experiments show that our approach outperforms the current Bayes' rule based method.

Detection of Malicious Code using Association Rule Mining and Naive Bayes classification (연관규칙 마이닝과 나이브베이즈 분류를 이용한 악성코드 탐지)

  • Ju, Yeongji;Kim, Byeongsik;Shin, Juhyun
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.11
    • /
    • pp.1759-1767
    • /
    • 2017
  • Although Open API has been invigorated by advancements in the software industry, diverse types of malicious code have also increased. Thus, many studies have been carried out to discriminate the behaviors of malicious code based on API data, and to determine whether malicious code is included in a specific executable file. Existing methods detect malicious code by analyzing signature data, which requires a long time to detect mutated malicious code and has a high false detection rate. Accordingly, in this paper, we propose a method that analyzes and detects malicious code using association rule mining and an Naive Bayes classification. The proposed method reduces the false detection rate by mining the rules of malicious and normal code APIs in the PE file and grouping patterns using the DHP(Direct Hashing and Pruning) algorithm, and classifies malicious and normal files using the Naive Bayes.

A Predictive Two-Group Multinormal Classification Rule Accounting for Model Uncertainty

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.4
    • /
    • pp.477-491
    • /
    • 1997
  • A new predictive classification rule for assigning future cases into one of two multivariate normal population (with unknown normal mixture model) is considered. The development involves calculation of posterior probability of each possible normal-mixture model via a default Bayesian test criterion, called intrinsic Bayes factor, and suggests predictive distribution for future cases to be classified that accounts for model uncertainty by weighting the effect of each model by its posterior probabiliy. In this paper, our interest is focused on constructing the classification rule that takes care of uncertainty about the types of covariance matrices (homogeneity/heterogeneity) involved in the model. For the constructed rule, a Monte Carlo simulation study demonstrates routine application and notes benefits over traditional predictive calssification rule by Geisser (1982).

  • PDF