Optimal Selection of Populations
for Units in a System

Woo-Chul Kim*
ABSTRACT

A problem of choosing units for the series system and the 1-out-of-2 system from
k available brands is treated from a decision-theoretic points of view. It is assumed
that units from each brand have exponentially distributed life lengths, and that the
loss functions are inversely proportional to the reliability of the system. For the
series system the ‘natural’ rule is shown to be optimal. For the 1-out-of-2 system,

the Bayes rule wrt the natural conjugate prior is derived and the constants to implement

the Bayes rule are given.

1. Introduection

Suppose we have an /-out-of-m system, where » units are to be placed
and at least / of them should function to make the system work, and the
life lengths of the units are independent. In many situations we have &
available populations (brands) My,..., I, and we need to decide which
population we are going to use for each unit.

Assume that each unit from the {-th population has an exponentially
distributed life length with mean life length ATY(E=1,..., k). Now the
problem is to find an optimal selection rule based on # independent observ-

ations Xi, ..., Xi from each I: ((=1,..., k). By sufficiency the problem
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can be reduced to the one based on X,..., Xz where X-:nZ X, has a
i=1

gamma distribution with mean »24;"! and variance »A;7%.

In section 2, we consider a series system, i.e., m-out-of-m system. The

reliability of the system, then, is easily seen to be (X A;)~! when the popu-
i=1

lations i, ..., i, (1<i,<--<in<k) are chosen (see, for example, [2]).

Hence it seems reasonable to take 3 A; as the loss incurred by such a
i=1

=
selection since it is inversely proportional to the reliability. Then it is shown

that the natural rule, which draws all the units from the population associated

with max X is uniformly best among the permutation invariant rules and,
1<i<k

therefore, it is admissible and minimax.

In sections 3, the Bayes rule for the 1l-out-of-2 system is derived where
the loss incurred by selecting [7; and [; (1<i<j<k) is assumed to be the
reciprocal of the reliability and the natural conjugate prior is assumed. The
table of the constants to implement the Bayes rule is also given.

Throughout the paper let x,<---<x3, denote the ordered observations
of Xi,---, X, and Il s, and A, denote the I and A associated with %y, for 7=
1,+, k. Given X=x=(xy,--+, 1), the posterior risk of a decision rule d will
be denoted by r(d,x).

2. The Series System

Here, we can take the action space by A={(7,tn) : 1<i;< <L in<k}
where (Zy,+--, in) € A is to be interpreted as the action of drawing the j-th

unit from II;, for j=1, -+, m. The loss function is assumed to be

L(/?’ (Z‘l’"'7 Z.m))zzl 2[1 (2- 1)
o
which is the reciprocal of the reliability of the system. Hence the posterior
risk of a dicision rule &, which takes an action (7y,---in) € A with probability

1 is given by
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rdn=E 3 alx] 2.2

Let Ns={n=(n1,>, #s) 1 >+ >ns, 2 m=m, n;eZ, j=1,-, s} where
7

Z is the set of positive integers, and let a b=Min(a, ). The next result
leads to considerable reduction in the number of decision rules to be compared
when the prior of 4 is assumed to be permutationally symmetric.

Lemma 2.1. Assume that the prior distribution of 4 is permutationally

symmetric. Then the Bayes rule d* is determined by

r(@*, x)=Min Min 7(dn, %) (2.3)

1<s<kAm neNs
where d, selects an action of drawing #; units from Z4_;.1, for Jj=1,..., s.
Proof. The action space A can be partitioned into k m components As(s:
1,..., kum) where we choose s different populations for m units. Note that

As can be written as As=U A, where As,n is defined as follows: for

neNs
given s=1,..., kym, and neN,, let
A-’, ﬁz{cily"':z.s; ﬂl,...,n:): lél.jgk, Z.J':f:if, for ]#],}
where (71,...,75; #3,..., 75) is a shorthand for the action of drawing #y,..., 7

unist from 1;,...,7;,,

Now consider a decision problem in which the action space is given by As,»

and the loss is given by (2.1), i.e., L(Z,a):i nihi, for acAs,n, Clearly this
- i=1

problem is equivalent to partitioning % populations 77,,..., [+ into s+1 subsets
(Y1,--+.7s, 7s+1) Where 7, is of size 1 for j=1,...,s, 7s+1 1S of size k-s. Note
that this decision problem is invariant under the permutation group, and
that the loss function satisfies the monotonicity and the invariance of Eaton
[4]. Since the density f(x,4:) of X; has the monotone likelihood ratio
-(MLR) in x and A:"%, it follows from Eaton’s result that the rule which
assigns I/ x_j+1, to 75 for j=1,...,s and the remaining ones to 7s,, is Bayes
wrt any permutationally symmetric prior. Hence the result follows.

The following lemma is needed for the main result.
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Lemma 2. 2. Assume that Xj,..., Xz, given (04, ..., 0z) ¢ ®*, are independently
distributed random variables with X; having pdf f(x,0:). If f(x,0) has the
MLR property in x and 6, and if the prior distribution, z(8), of 6=(0y,...,01)
is permutationally symmetric on@?*, then, for 7>/,
E(g(8u)ix)>Elg(0u) %]
provided g(+) is non-decreasing on @ and 6, is the ¢ associated with %,
Proof. Let Qy={0ec@®* : 6, >0}, then
Jo@(g(0&)—g0u)] f(x,6) de(d)
=[(Jo ¢+ J (gW0w)—gu)] F(%0) de(6)
=Jo.Lg(0)—g(0w)] [f(%0)—f(x,6)]dz(0)

k
where f(x,6) :'{]1 f(x:,6:) and ¢’ is obtained from @ by interchanging 0 ¢
and 0, keeping other components fixed. The result follows from the
MLR property of f(x, §) and the fact that g(6)—g(0u) =0 for g ¢ Q.

Remark 2.1. The MLR property and the independence can be replaced by
the DT (decreasing in transposition) property of f(x, §) in Hollander,

Proschan and Sethuraman [6]. Now we state the following result.

Theorem 2.1. For any permutationally symmetric prior of A, the Bayes
rule d* draws all m units from 7.

Proof. It follows from the definition of d, and (2.2) that, for z eNs.
r(dy D=E %, niaim 2]
Jj=1
Therefore, for # &N,

r(dn ) —E [n=s+Diw+ % dason 1]

E (3%, n)Aar-+ 5, miosn)s]

i=2

=F [(m—s-i— 1)/2(}1) +J§2 /1(1!—.1'-#1) l x}

=E [12:;2 (=1 Ar_ivn —Ady) ‘i‘]
=0,
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by Lemma 2. 2.
Thus Min 7(d», x)=r(dsx) where ds draws(m—s+1) units from T4 and

nsN,

one unit from each Hu_j,1,,(7=2,..., 5). On the other hand,
for any s : 2<s<kum

rdy D) =r@D=E % Qa_sm—Aa) |
=0,

again by Lemma 2.2. Hence d*=d,, i.e., the Bayes rule draws all 7 units
from X (.

The next result follows from considering a permutationally symmetric
prior which gives mass 1/k/ at each parameter point obtained from any
given parameter 4 by permuting its components. (see, for example, §4.3
in Ferguson [5])

Corollary 3.1. The natural rule d* is uniformly best among the permutation
invariant rules, and it is admissible and minimax among all dicision rules.

Remark 2.2. If we consider a loss function L;(A (7y,..., {n)) =(m l\élil}2 A)T
—_— e = 1<iL

—(Zm: Zi,>"1, it can be easily shown that Lemma 2.1. holds for this loss
i=1

function. Assuming an exchangeable prior for 4, it can be verified that the

Bayes rule d* is determined by »(d*, x) :I\g/hgl}z r(ds, x) where the rule ds
- 1<s<kam -

is as in the proof of Theorem 2.1. Even though this is a considerable
reduction in a number of candidates for the Bayes rule, specification of it
seems difficult except when m=2. Further simplification of the Bayes rule
with respect to a specific prior would be interesting along with some

numerical results.

3. The 1-out-of-2 System

Here, the action space is A={(, J) : 1<i<Lj<k} where (4, j) ¢A denotes

the action of drawing one unit each from I: and ;. For the l-out-of-2
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system, the reliability of the system corresponding to the action (7, j) 4
is given by A:7'+2174—(A:42,) "L Hence it seems reasonable to assume that
the loss function is given by
LA, G, D)=+ 47 = (h+4)™) ! G.D

Brostrom [3] considered the 1-out-of-2 system when only two populations
are available, and assumed a loss function depending on (4, ;) only through
Ai/4; so that the problem is invariant under the scale transformation.
This could be achieved by dividing (3.1) by L(4(1,2)), i.e., the loss
incurred by an “intermediate” action, which does not exist in the case
when &> 2,

We will consider a natural conjugate prior z of 4, given by the pdf

Z('D::Hl[ P'?;) At e'ﬂ‘:], a<0 and >0 (3.2

i.e., Ai,..., A& are, a priori, independent gamma random variable with common
scale and shape parameters, 87! and «, respectively. It can be easily observed
that, given Y=ux, the 1y, are, a posteriori, independently distributed gamma
random variables with mean (n+a)(xq+p)"! and variance
(n+a) (X, +B) 72

The action space A can be partitioned into A;=((,7) : i=1,..., k} and
Ay=((,5) : 1<i<j<k}. Then the decision problem with the action space
As (s=1,2) and the loss function in (3. 1) is equivalent to partitioning 75,...,
II: into two subsets 7; and 7, with 7; being of size s and 7, being of size
k—s. Hence, by the same arguments as in Lemma 2.1, we have the next
result.
Lemma 3.1. Assume that the prior of 4 is permutationally symmetric. Then
the Bayes rule d* is given by,

r(@*, x)=Min {r(d,, %), r(d,, %)} 3.3

where d; chooses 2 units from H &, and d, chooses 1 unit from /4, and
another from I a_y,.

Theorem 3.2. Assume that the prior is given by (3.2). Then the Bayes
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rule d* is given by
2+ [dl if oy +pLc(xy +6)

d, if X, +B>c(xa+a) @G0
. . UV(U+cV _ 2

where ce (0, 1) is determined by Ha,n(c):E[ I ~I—c(217;l_—{€c[}7—]—_§—(”+a)
and U,V are iid gamma random variables with mean #z-+a and variance
rn-ta.
Proof. It follows from (3.1) and (3.2) that

2 _ 2 . nta

r(dy, %) =73 EQAay | X]= 3 X +B and

r(dz,f) =EAwmAck-n Ay +Ac_1) Ads?+ Ay Aoy HA-1?) 71 4]

_ 1 E[ UV(U+rV) ]
- x(k)+18 U2+7'UFV+7‘ZV2 ’

where 7r=(xua_,+0)/(xuw+B), U and V are iid gamma random variables

with mean (#+a) and variance (#+a). Since H.,.(f)is non-decreasing in

£>0, 7(dy, x)>r(dyx) if and only if (%1, +8)/ (%@ +B)>c. Furthermore,

it can be easily shown that H., (1) <—§- (n4+a), which implies 0<<c¢ <1.
Hence the result follows from Lemma 3. 2.

It can be easily shown that Xi(X;+8)7% ..., Xa(Xe+8)"! are marginally
independent beta random variables with mean z(z-+8)71. Hence the overall

risk of the rule d, is given by

r@y="% (nta)p ElZ)< 5 4

where Z, is the smallest order statistic based on a sample of size & from
beta distribution with mean a(s#+a)~'. Therefore, the overall risk of the
Bayes rule d* is finite. Furthermore, it can be shown that the risk function
R(2, d) is a continuous function of A for any rule d(see, for example, §3.7
in Ferguson [5]). Hence, we have the next result.
Corollary 3.1. The Bayes rule given by (3.4) is admissible.

Note that the generalized Bayes rule wrt the vague prior is given by

. dy if xao, <bxay
de= dy if xa_p>bxw,
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UV(U+bV) ]

. . 2
where 2¢(0,1) is given by Hn(b):E[ UZreVeirbUvV

=5 n i.e., the

generalized Bayes rule uses 2 units from 74, only when the largest sample
mean life length and the second largest sample mean life length are really
different.

Remark 3.1, Suppose that the loss incurred by (7,7). €A is given by
S (Min )7 =LA+, '— (4+A) 1. Then it follows in a similar way that

1<i<k
the Bayes rule wrt the prior given by (3.2) is of the same form in (3.4)

except that ¢ ¢ (0,1) is determined by

11 ¢
Gor@ =" a1 wFa=1 TELcUTV )0

where U and V are independent gamma random variables with mean and

variance equal to (z+a).

The constants to implement the (generalized) Bayes rules given in The-
orem 3.1. and Remark 3.1. are found by numerically integrating Hen(C)
and G.,»(c) using the first fifteen Laguerre polynomials (see Abramowitz and

Stegun [1]). These are given at the end of the paper.
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Table. 1. Lists c-values to implement the (generalized) Bayes rule in Theorem 38.1. which

depends on n and a through the quantity m=n-+a.

m c m c m c
1.0 . 3033 11.0 . 8870 21.0 . 9388
1.5 .4392 11.5 . 8916 21.5 . 9402
2.0 .5342 12,0 . 8958 22.0 . 9415
2,5 . 6021 12,5 . 8997 22.5 . 9428
3.0 . 6530 13.0 . 6034 23.0 . 9440
3.5 . 6925 13.5 . 5067 23.5 . 9451
4,0 . 7240 14.0 . 9099 24,0 . 9462
4.5 . 7496 14.5 .9128 24.5 . 9473
5.0 L7710 15.0 . 9156 25.0 . 9483
5.5 . 7890 15.5 .9182 25.5 . 9493
6.0 . 8044 16.0 . 9206 26.0 . 9502
6.5 . 8177 16.5 . 9229 26.5 L9511
7.0 . 8293 17.0 . 9251 27.0 . 9520
7.5 . 8396 17.5 .9271 27.5 . 9529
8.0 . 8486 18.0 . 9291 28.0 . 9537
8.5 . 8567 18.5 . 9309 28.5 . 9545
9.0 . 8640 19.0 . 9326 29.0 . 9552
9.5 . 8706 19.5 . 9343 29.5 . 9560
10.0 . 8766 20.0 . 9359 30.0 . 9567
10.5 . 8820 20.5 . 9374 30.5 . 9574
Table 11. Lists c-values to implement the (generalized) Bayes rule in Remark 3.1. which
depends on n and « through the quantity m=n-+a.

m c m ¢ m c
1.5 . 7854 11,5 . 9817 21.5 . 9904
2.0 . 8592 12.0 . 9825 22.0 . 9907
2.5 . 8957 12.5 . 9832 22.5 . 9909
3.0 L9173 13.0 . 9839 23.0 . 9911
3.5 .9315 13.5 . 9845 23.5 . 9913
4.0 L9415 14.0 . 9851 24.0 . 9915
4.5 . 9490 14.5 . 9856 24.5 . 9916
5.0 . 9548 15.0 . 9861 25.0 . 9918
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m c m c m c

5.5 . 9594 15.5 . 5866 25.5 . 9920
6.0 . 9631 16.0 . 9870 26.0 .9921
6.5 . 9662 16.5 . 9874 26.5 . 9923
7.0 . 9688 17.0 . 9878 27.0 . 9924
7.5 L9711 17.5 . 9882 27.5 . 9926
8.0 .9730 18.0 . 9885 28.0 . 9927
8.5 . 9747 18.5 . 9888 28.5 . 9928
9.0 . 9762 19.0 . 9891 29.0 . 9930
9.5 . 9776 19.5 . 9894 29.5 . 9931
10.0 . 9788 20.0 . 9897 30.0 . 9932
10.5 . 9798 20.5 . 9660 30.5 . 9933
11.0 . 9808 21.0 . 9902 31.0 . 9934




