• 제목/요약/키워드: Bay K 8644

검색결과 63건 처리시간 0.024초

GREEN TEA EXTRACT INHIBITS CATECHOLAMINE RELEASE IN THE PERFUSED RAT ADRENAL GLAND

  • Lim, Dong-Yoom;Shin, Hye-Gyeong
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.255.2-255.2
    • /
    • 2002
  • The present study was designed to investigate the effects of green tea extract (GTE) and epigallocatechin gallate (EGCG) on secretion of catecholamines (CA) in the isolated perfused rat adrenal gland. In the presence of GTE (100 ${\mu}$g/$m\ell$) into an adrenal vein for 60 min. CA secretory responses evoked by ACh (5.32 mM), high K+ (56 mM) and Bay-K-8644 (10 ${\mu}$M for 4 min) from the isolated perfused rat adrenal glands were greatly inhibited in a time-dependent fashion. (omitted)

  • PDF

Influence of Glibenclamide on Catecholamine Secretion in the Isolated Rat Adrenal Gland

  • No, Hae-Jeong;Woo, Seong-Chang;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • 제15권2호
    • /
    • pp.108-117
    • /
    • 2007
  • The aim of the present study was to investigate the effect of glibenclamide, a hypoglycemic sulfonylurea, which selectively blocks ATP-sensitive K$^+$ channels, on secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane depolarization from the isolated perfused rat adrenal glands. The perfusion of glibenclamide (1.0 mM) into an adrenal vein for 90 min produced time-dependently enhanced the CA secretory responses evoked by ACh (5.32 mM), high K$^+$ (a direct membrane depolarizer, 56 mM), DMPP (a selective neuronal nicotinic receptor agonist, 100 ${\mu}$M for 2 min), McN-A-343 (a selective muscarinic M1 receptor agonist, 100 ${\mu}$M for 2 min), Bay-K-8644 (an activator of L-type dihydropyridine Ca$^{2+}$ channels, 10 ${\mu}$M for 4 min) and cyclopiazonic acid (an activator of cytoplasmic Ca$^{2+}$-ATPase, 10 ${\mu}$M for 4 min). In adrenal glands simultaneously preloaded with glibenclamide (1.0 mM) and nicorandil (a selective opener of ATP-sensitive K$^+$ channels, 1.0 mM), the CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were recovered to the considerable extent of the control release in comparison with that of glibenclamide-treatment only. Taken together, the present study demonstrates that glibenclamide enhances the adrenal CA secretion in response to stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization from the isolated perfused rat adrenal glands. It seems that this facilitatory effect of glibenclamide may be mediated by enhancement of both Ca$^{2+}$ influx and the Ca$^{2+}$ release from intracellular store through the blockade of K$_{ATP}$ channels in the rat adrenomedullary chromaffin cells. These results suggest that glibenclamide-sensitive K$_{ATP}$ channels may play a regulatory role in the rat adrenomedullary CA secretion.

Naltrexone Inhibits Catecholamine Secretion Evoked by Nicotinic Receptor Stimulation in the Perfused Rat Adrenal Medulla

  • Yu, Byung-Sik;Min, Seon-Young;Seo, Yoo-Seok;Choi, Cheol-Hee;Lee, Eun-Hwa;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권4호
    • /
    • pp.223-230
    • /
    • 2005
  • The purpose of the present study was to examine the effect of naltrexone, an opioid antagonist, on secretion of catecholamines (CA) evoked by cholinergic nicotinic stimulation and membrane-depolarization from the isolated perfused rat adrenal gland and to establish the mechanism of its action. Naltrexone $(3{\times}10^{-6}M)$ perfused into an adrenal vein for 60 min produced time-dependent inhibition in CA secretory responses evoked by ACh $(5.32{\times}10^{-3}M)$ , high $K^+$ $(5.6{\times}10^{-2}M)$ , DMPP ($10^{-4}$ M) and McN-A-343 $(10^{-4}M)$ . Naltrexone itself did also fail to affect basal CA output. In adrenal glands loaded with naltrexone $(3{\times}10^{-6}M)$ , the CA secretory responses evoked by Bay-K-8644, an activator of L-type $Ca^{2+}$ channels and cyclopiazonic acid, an inhibitor of cytoplasmic $Ca^{2+}-ATPase$, were also inhibited. However, in the presence of met-enkephalin $(5{\times}10^{-6}M)$ , a well-known opioid agonist, the CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were also significantly inhibited. Collectively, these experimental results demonstrate that naltrexone inhibits greatly CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as that by membrane depolarization. It seems that this inhibitory effect of naltrexone does not involve opioid receptors, but might be mediated by blocking both the calcium influx into the rat adrenal medullary chromaffin cells and the uptake of $Ca^{2+}$ into the cytoplasmic calcium store, which are at least partly relevant to the direct interaction with the nicotinic receptor itself.

INFLUENCE OF 17-$\alpha$-ESTRADIOL ON CATECHOLAMINE SECRETION FROM THE PERFUSED RAT ADRENAL GLAND

  • Lim, Dong-Yoon;Lee, Jong-Jin-;Ko, Suk-Tai
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.297-297
    • /
    • 1994
  • It has been known that adrenal corticosteroids influence the expression of adrenomedullary catecholamine-synthetizing enzymes and also suppress the emission of axonal-like processes in cultured chromaffin cells. In the present study, it was attempted ta investigate the effect of 17${\alpha}$-estradiol on catecholamine(CA) secretion evoked by acetylcholine(ACh), DMPP, McN-A-343, excess K$\^$+/ and Bay-K-8644 from the isolated perfused rat adrenal gland. The perfusion of 17${\alpha}$-estradiol (10$\^$-6/ 10$\^$-4/M) me an adrenal vein for 20min produced relatively dose-dependent inhibition in CA secretion evoked by ACh (5.5 ${\times}$ 10$\^$-3/M), DMPP (10$\^$-4/M for 2min), McN-A-343 (10$\^$-4/M for 4min) and Bay-K-8644 (10$\^$-5/M for 4min), while did not affect the CA secretory effect of high K$\^$+/(5.6 x 10$\^$-2/M). Also, in the presence of 17${\beta}$-estradiol, CA secretion of ACh, DMPP and McN-A-343 without any effect on excess K$\^$+/-evoked CA secretion. However, in adrenal glands preloaded with 17${\alpha}$-estradiol (10$\^$-5/M) plus tamoxifen (10$\^$-5/M), which is known to be a selective antagonist of estrogen receptors (for 20min), CA secretory responses evoked by ACh, DMPP and McN-A-343 were considerably recovered as compared to that of 17${\alpha}$-estradiol only, but excess K$\^$+/-induced CA secretion was not affected.

  • PDF

Influence of Glucocorticoids on Cholinergic Stimulation-Induced Catecholamine Secretion from the Rat Adrenal Medulla

  • Lim, Dong-Yoon;Lee, Jae-Joon;Gweon, Oh-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권2호
    • /
    • pp.173-184
    • /
    • 1998
  • The present study was undertaken to examine the influence of glucocorticoids on the secretory responses of catecholamines (CA) evoked by acetylcholine (ACh), DMPP, McN-A-343, excess K^+$ and Bay-K-8644 from the isolated perfused rat adrenal gland and to clarify the mechanism of its action. The perfusion of the synthetic glucocorticoid dexamethasone (10-100\;{\mu}M$) into an adrenal vein for 20 min produced a dose-dependent inhibition in CA secretion evoked by ACh (5.32 mM), excess K^+$ (a membrane-depolarizor 56 mM), DMPP (a selective nicotinic receptor agonist, 100\;{\mu}M$ for 2 min), McN-A-343 (a muscarinic receptor agonist, 100\;{\mu}M$ for 4 min), Bay-K-8644 (a calcium channel activator, 10\;{\mu}M$ for 4 min) and cyclopiazonic acid (a releaser of intracellular $Ca^{2+}$, 10\;{\mu}M$ for 4 min). Similarly, the preperfusion of hydrocortisone (30\;{\mu}M$) for 20 min also attenuated significantly the secretory responses of CA evoked by nicotinic and muscarinic receptor stimulation as well as membrane-depolarization, $Ca^{2+}$ channel activation and the release of intracellular $Ca^{2+}$. Furthermore, even in the presence of betamethasone (30{\mu}M$), CA secretion evoked by ACh, excess K^+$, DMPP and McN-A-343 was also markedly inhibited. Taken together, the present results suggest that glucocorticoids cause the marked inhibition of CA secretion evoked by both cholinergic nicotinic and muscarinic receptor stimulation from the isolated perfused rat adrenal gland, indicating strongly that this inhibitory effect may be mediated by inhibiting influx of extracellular calcium as well as the release of intracellular calcium in the rat adrenomedullary chromaffin cells.

  • PDF

Influence of Naloxone on Catecholamine Release Evoked by Nicotinic Receptor Stimulation in the Isolated Rat Adrenal Gland

  • Kim Ok-Min;Lim Geon-Han;Lim Dong-Yoon
    • Archives of Pharmacal Research
    • /
    • 제28권6호
    • /
    • pp.699-708
    • /
    • 2005
  • The present study was designed to investigate the effect of naloxone, a well known opioid antagonist, on the secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane-depolarization in the isolated perfused rat adrenal glands, and to establish its mechanism of action. Naloxone ($10^{-6}\~10^{-5}$ M), perfused into an adrenal vein for 60 min, produced dose- and time-dependent inhibition of CA secretory responses evoked by ACh ($5.32\times10^{-3}$ M), high K+ ($5.6\times10^{-2}$ M), DMPP ($10^{-4}$ M) and McN-A-343 ($10^{-4}$ M). Naloxone itself also failed to affect the basal CA output. In adrenal glands loaded with naloxone ($3\times10^{-6}$ M), the CA secretory responses evoked by Bay-K-8644, an activator of L-type $Ca^{2+}$ channels, and cyclopiazonic acid, an inhibitor of cytoplasmic $Ca^{2+}$-ATPase, were also inhibited. In the presence of met-enkephalin ($5\times10^{-6}$ M), a well known opioid agonist, the CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were also significantly inhibited. Taken together, these results suggest that naloxone greatly inhibits the CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as that by membrane depolarization. It seems that these inhibitory effects of naloxone does not involve opioid receptors, but might be mediated by blocking both the calcium influx into the rat adrenal medullary chromaffin cells and the uptake of $Ca^{2+}$ into the cytoplasmic calcium store, which are at least partly relevant to the direct interaction with the nicotinic receptor itself.

Influence of Bromocriptine on Release of Norepinephrine and Epinephrine Evoked by Cholinergic Stimulation from the Rat Adrenal Medulla

  • Lee, Seung-Il;Kang, Moo-Jin;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • 제9권3호
    • /
    • pp.201-208
    • /
    • 2001
  • The present study was conducted to examine the effects of cholinergic stimulation and membrane depolarization on secretion of epinephrine (EP) and norepinephrine (NE) in the perfused model of the rat adrenal gland and to investigate the effect of bromocriptine on secretion of EP and NE evoked by these secreta-gogues. Acetylcholine (ACh, 5.32 mM), high $K^{+}$(56mM), 1.1-dimethyl-4-phenyl piperazinium iodide (DMPP, 100 $\mu$M for 2 min), (3-(m-cholro-phenyl-carbamoyl-oxy)-2butynyl trimethyl ammonium chloride (McN-A-343, 100 $\mu$M for 2 min), cyclopiazonic acid (10 $\mu$M for 4 min) and methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl) -pyridine-5-carboxylate (Bay-K-8644, 10 $\mu$M for 4 min) evoked a 1.3~5.3-fold greater secretion of EP than NE in the perfused rat adrenal gland. The perfusion of bromocriptine (1-10 $\mu$M) into an adrenal vein for 20 min produced relatively dose-dependent inhibition in secretion of EP and NE evoked by ACh, high $K^{+}$, DMPP, and McN-A-343. Moreover, under the presence of bromocriptine (1~10 $\mu$M), releasing responses of EP and NE evoked by cyclopiazonic acid and Bay-K-8644 were also greatly reduced. Taken together, these results suggest that cholinergic stimulation and membrane depolarization enhance more release of EP than NE in the perfumed rat adrenal medulla, and that bromocriptine inhibits the release of EP and NE evoked by stimulation of cholinergic receptors as well as by membrane depolarization. It seems that this inhibitory effect of bromocriptine is associated with inhibition of calcium channels through activation of dopaminergic D2-receptors located in the rat adrenomedullary chromaffin cells.lls.

  • PDF

Inhibitory Effects of Dihydrexidine on Catecholamine Release from the Rat Adrenal Medulla

  • Lee, Jae-Hwang;Lim, Hyo-Jeong;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • 제17권1호
    • /
    • pp.32-42
    • /
    • 2009
  • The purpose of the present study was to examine the effect of dihydrexidine, a full $D_1$ receptor agonist, on the secretion of catecholamines (CA) from the perfused model of the rat adrenal gland, and to establish its mechanism of action. Dihydrexidine (10-100 ${\mu}M$), perfused into an adrenal vein for 60 min, relatively produced dose- and time-dependent inhibition in the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM), DMPP (100 ${\mu}M$) and McN-A-343 (100 ${\mu}M$). Dihydrexidine itself did fail to affect basal CA output. Also, in adrenal glands loaded with dihydrexidine (30 ${\mu}M$), the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}M$), an activator of L-type $Ca^{2+}$ channels, cyclopiazonic acid (10 ${\mu}M$), an inhibitor of cytoplasmic $Ca^{2+}$-ATPase, and veratridine, an activator of voltage-dependent $Na+$ channels (10 ${\mu}M$), were also markedly inhibited, respectively. However, in the simultaneous presence of dihydrexidine (30 ${\mu}M$) and R (+)-SCH23390 (a selective antagonist of $D_1$ receptor, 3 ${\mu}M$), the CA secretory responses evoked by ACh, high K+, DMPP, McN-A-343, Bay-K-8644, cyclopiazonic acid and veratridine were considerably recovered to the extent of the corresponding control secretion compared with the inhibitory responses by dihydrexidinetreatment alone. In conclusion, these experimental results suggest that dihydrexidine significantly inhibits the CA secretion evoked by cholinergic stimulation (both nicotinic and muscarinic receptors) and membrane depolarization from the rat adrenal medulla. It seems that this inhibitory effect of dihydrexidine may be mediated by inhibiting influx of both $Ca^{2+}$ and $Na^+$ into the cytoplasm as well as by suppression of $Ca^{2+}$ release from cytoplasmic calcium store through activation of dopaminergic $D_1$ receptors located on the rat adrenomedullary chromaffin cells.

Influence of SKF81297 on Catecholamine Release from the Perfused Rat Adrenal Medulla

  • Choi, Deok-Ho;Cha, Jong-Hee;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권5호
    • /
    • pp.197-206
    • /
    • 2007
  • The aim of the present study was to investigate the effects of 6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine(SKF81297), a selective agonist of dopaminergic $D_1$ receptor, on the secretion of catecholamines(CA) evoked by cholinergic stimulation and membrane-depolarization in the isolated perfused rat adrenal gland, and also to elucidate the mechanism involved. SKF81297($10{\sim}100{\mu}M$) perfused into an adrenal vein for 60 min produced dose- and time-dependent inhibition of CA secretory responses evoked by ACh(5.32 mM), high $K^+$(56 mM), DMPP($100{\mu}M$) and McN-A-343($100{\mu}M$). Also, in adrenal glands loaded with SKF81297($30{\mu}M$), the CA secretory responses evoked by Bay-K-8644($10{\mu}M$), an activator of L-type $Ca^{2+}$ channels and cyclopiazonic acid($10{\mu}M$), an inhibitor of cytoplasmic $Ca^{2+}$-ATPase were also inhibited. However, in the presence of the dopamine $D_1$ receptor antagonist, (R)-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-benzazepine-7-ol(SCH23390, $3{\mu}M$), which is a selective antagonist of dopaminergic $D_1$ receptor, the inhibitory responses of SKF81297($30{\mu}M$) on the CA secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644, and cyclopiazonic acid were significantly reduced. Collectively, these experimental results suggest that SKF81297 inhibits the CA secretion from the rat adrenal medulla evoked by cholinergic stimulation(both nicotininc and muscarinic receptors) and membrane depolarization. This inhibitory of SKF81297 seems to be mediated by stimulation of dopaminergic $D_1$ receptors located on the rat adrenomedullary chromaffin cells, which are relevant to extra- and intracellular calcium mobilization. Therefore, it is thought that the presence of the dopaminergic $D_1$ receptors may be involved in regulation of CA release in the rat adrenal medulla.

Influence of $\omega$-Conotoxin GVIA, Nifedipine and Cilnidipine on Catecholamine Release in the Rat Adrenal Medulla

  • Yu, Byung-Sik;Kim, Byeong-Cheol;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권1호
    • /
    • pp.21-30
    • /
    • 2007
  • The present study was designed to establish comparatively the inhibitory effects of cilnidipine(CNP), nifedipine(NIF), and $\omega$-conotoxin GVIA(CTX) on the release of CA evoked by cholinergic stimulation and membrane depolarization from the isolated perfused model of the rat adrenal medulla. CNP(3 ${\mu}M$), NIF(3 ${\mu}M$), and CTX(3 ${\mu}M$) perfused into an adrenal vein for 60 min produced greatly inhibition in CA secretory responses evoked by ACh($5.32{\times}10^{-3}M$), DMPP($10^{-4}M$ for 2 min), McN-A-343($10^{-4}M$ for 2 min), high $K^+(5.6{\times}10^{-2}M)$, Bay-K-8644($10^{-5}M$), and cyclopiazonic acid($10^{-5}M$), respectively. For the CA release evoked by ACh and Bay-K-8644, the following rank order of potency was obtained: CNP>NIF>CTX. The rank order for the CA release evoked by McN-A-343 and cyclopiazonic acid was CNP>NIF>CTX. Also, the rank orders for high $K^+$ and for DMPP were NIF>CTX>CNP and NIF>CNP>CTX, respectively. Taken together, these results demonstrate that all voltage-dependent $Ca^{2+}$ channels(VDCCs) blockers of cilnidipine, nifedipine, and $\omega$-conotoxin GVIA inhibit greatly the CA release evoked by stimulation of cholinergic(both nicotinic and muscarinic) receptors and the membrane depolarization without affecting the basal release from the isolated perfused rat adrenal gland. It seems likely that the inhibitory effects of cilnidipine, nifedipine, and $\omega$-conotoxin GVIA are mediated by the blockade of both L- and N-type, L-type only, and N-type only VDCCs located on the rat adrenomedullary chromaffin cells, respectively, which are relevant to $Ca^{2+}$ mobilization. It is also suggested that N-type VDCCs play an important role in the rat adrenomedullary CA secretion, in addition to L-type VDCCs.