Browse > Article
http://dx.doi.org/10.4062/biomolther.2007.15.2.108

Influence of Glibenclamide on Catecholamine Secretion in the Isolated Rat Adrenal Gland  

No, Hae-Jeong (Department of Pharmacology, College of Medicine, Chosun University, Department of Family Medicine, Eulji University Hospital)
Woo, Seong-Chang (Department of Anesthesiology, Eulji University Hospital)
Lim, Dong-Yoon (Department of Pharmacology, College of Medicine, Chosun University)
Publication Information
Biomolecules & Therapeutics / v.15, no.2, 2007 , pp. 108-117 More about this Journal
Abstract
The aim of the present study was to investigate the effect of glibenclamide, a hypoglycemic sulfonylurea, which selectively blocks ATP-sensitive K$^+$ channels, on secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane depolarization from the isolated perfused rat adrenal glands. The perfusion of glibenclamide (1.0 mM) into an adrenal vein for 90 min produced time-dependently enhanced the CA secretory responses evoked by ACh (5.32 mM), high K$^+$ (a direct membrane depolarizer, 56 mM), DMPP (a selective neuronal nicotinic receptor agonist, 100 ${\mu}$M for 2 min), McN-A-343 (a selective muscarinic M1 receptor agonist, 100 ${\mu}$M for 2 min), Bay-K-8644 (an activator of L-type dihydropyridine Ca$^{2+}$ channels, 10 ${\mu}$M for 4 min) and cyclopiazonic acid (an activator of cytoplasmic Ca$^{2+}$-ATPase, 10 ${\mu}$M for 4 min). In adrenal glands simultaneously preloaded with glibenclamide (1.0 mM) and nicorandil (a selective opener of ATP-sensitive K$^+$ channels, 1.0 mM), the CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were recovered to the considerable extent of the control release in comparison with that of glibenclamide-treatment only. Taken together, the present study demonstrates that glibenclamide enhances the adrenal CA secretion in response to stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization from the isolated perfused rat adrenal glands. It seems that this facilitatory effect of glibenclamide may be mediated by enhancement of both Ca$^{2+}$ influx and the Ca$^{2+}$ release from intracellular store through the blockade of K$_{ATP}$ channels in the rat adrenomedullary chromaffin cells. These results suggest that glibenclamide-sensitive K$_{ATP}$ channels may play a regulatory role in the rat adrenomedullary CA secretion.
Keywords
Glibenclamide; Nicorandil; Catecholamine secretion; Adrenal gland; ATP-sensitive K$^+$ (K$_{ATP}$) channels;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tallarida, R. J. and Murray, R. B. (1987). Manual of pharmacologic calculation with computer programs. 2nd Ed. Speringer-Verlag, New York, pp. 132
2 Hammer, R. and Giachetti, A. (1982). Muscarinic receptor subtypes: $M_1$ and $M_2$ biochemical and functional characterization. Life Sci. 31, 2992-2998
3 Meisheri, K. D., Cipkus-Dubray, L. A., Hosner J. M. and Khan, S. (1991). Nicorandil-induced vasorelaxation: Functional evidence for $K^+$ channel-dependent and cyclic GMP-dependent components in a single vascular preparation. J. Cardiovasc. Pharmacol. 17, 903   DOI
4 Ashcroft, F. M. (1988). Adenosine 5'-triphosphate-sensitive potassium channels. Annu. Rev. Neurosci. 11, 763-770
5 Akaike, A., Mine, Y., Sasa, M. and Takaori, S. (1990). Voltage and current clamp studies of muscarinic and nicotinic excitation of the rat adrenal chromaffin cells. J. Pharmacol. Expt. Ther. 255, 333-339
6 Challiss, R. A. J., Jones, J. A., Owen, P. J. and Boarder, M. R. (1991). Changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass accumulations in cultured adrenal chromaffin cells in response to bradykinin and histamine. J. Neurochem. 56, 1083-1086   DOI
7 Anton, A. H. and Sayre, D. F. (1962). A study of the factors affecting the aluminum oxidetrihydroxy indole procedure for the analysis of catecholamines. J. Pharmacol. Exp. Ther. 138, 360-375
8 Aguilar-Bryan, L., Clement, J. P., Gonzalez, G., Kunjilwar, K., Babenko, A. and Bryan, J. (1998). Toward understanding the assembly and structure of KATP channels. Physiol. Rev. 78, 227-245   DOI
9 Asano, M., Masuzawa-Ito, K. and Matsuda, T. (1994). Vasodilating actions of cromakalim in resting and contracting states of carotid arteries from spontaneously hypertensive rats. European J. Pharmacol. 263, 121-131   DOI   ScienceOn
10 Ashford, M. L. J., Sturgess, N. C., Trout, N. J., Gardner, N. J. and Hales, C. N. (1988). Adenosine 5'-triphosphate-sensitive ion channels in neonatal rat cultured central neurones. Pflugers Arch. 412, 297-304   DOI
11 Benndorf, K., Thierfelder, S., Doepner, B., Gebhardt, C. and Hirche, H. (1997). Role of cardiac K-ATP channels during anoxia and ischemia. News Physiol. Sci. 12, 78-83
12 Burgoyne, R. D. (1984). Mechanism of secretion from adrenal chromaffin cells. Biochem. Biophys. Acta. 779, 201-216   DOI   ScienceOn
13 Cena, V., Nicolas, G. P., Sanchez-Garcia, P., Kirpekar, S. M. and Garcia, A. G. (1983). Pharmacological dissection of receptorassociated and voltage-sensitive ionic channels involved in catecholamine release. Neuroscience 10, 1455-1462   DOI   ScienceOn
14 Furukawa, K., Itoh, I., Kajiwara, M., Kitamura, K., Suzuki, H., Ito, Y. and Kuriyama, H. (1981). Effects of 2-nicotinamidoethyl nitrate on smooth muscle cells and on adrenergic transmission in guinea-pig and porcine mesenteric arteries. J. Pharmacol. Exp. Ther. 218, 260
15 Cook, N. S. (1988). The pharmacology of potassium channel and their therapeutic potential. Trends Pharmacol. Sci. 9, 21-28   DOI   ScienceOn
16 Garcia, A. G., Sala, F., Reig, J. A., Viniegra, S., Frias, J., Fonteriz, R. and Gandia, L. (1984). Dihydropyridine Bay-K-8644 activates chromaffin cell calcium channels. Nature 309, 69-71   DOI   ScienceOn
17 Lim, D. Y. and Hwang, D. H. (1991). Studies on secretion of catecholamines evoked by DMPP and McN-A-343 in the rat adrenal gland. Korean J. Pharmacol. 27, 53-67   과학기술학회마을
18 Cheek, T. R., O'Sullivan, A. J., Moreton, R. B., Berridge, M. J. and Burgoyne, R. D. (1989). Spatial localization of the stimulus-induced rise in cytosolic $Ca^{2+}$ in bovine adrenal chromaffin cells: Distinct nicotinic and muscarinic patterns. FEBS Lett. 247, 429-434   DOI   ScienceOn
19 Corcoran, J. J. and Kirshner, N. (1983). Inhibition of calcium uptake, sodium uptake, and catecholamine secretion by methoxyverapamil (D600) in primary cultures of adrenal medulla cells. J. Neurochem. 40, 1106-1109   DOI
20 Edwards, G., Duty, S., Trezise, D. J. and Weston, A. H. (1992). Effects of potassium-channel modulators on the cardiovascular system. In Potassium channel modulators: Phamacological, molecular and clinical aspects (A. H. Weston, T. C. Hamilton, Ed.), pp. 369-463. Blackwell Science, Oxford
21 Endoh, M. and Taira, N. (1983). Relationship between relaxation and cyclic GMP formation caused by nicorandil in canine mesenteric arteries. Naunyn-Schmiedeberg's Arch. Pharmacol. 322, 319   DOI   ScienceOn
22 Finta, E. P., Harms, L., Sevick, J., Fischer, H. D. and Illes, P. (1993). Effects of potassium channel openers and their antagonists on rat locus coerulus neurones. Br. J. Pharmacol. 109, 308-315   DOI   ScienceOn
23 Heldman, E., Levine, M., Rabeh, L. and Pollard, H. B. (1989). Barium ions enter chromaffin cells via voltage-dependent calcium channels and induce secretion by a mechanism independent of calcium. J. Biol. Chem. 264, 7914-7920
24 Pierrefiche, O., Bischoff, A. M. and Richter, D. W. (1996). ATP-sensitive $K^{+}$ channels are functional in expiratory neurones of normoxic cats. J. Physiol. (Lond) 494, 399-409
25 Goeger, D. E. and Riley, R. T. (1989). Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on $Ca^{2+}$ binding and $Ca^{2+}$ permeability. Biochem. Pharmacol. 38, 3995-4003   DOI   ScienceOn
26 Hamilton, T. and Weston, A. (1989). Cromakalim, nicorandil and pinacidil: novel drugs which open potassium channels in smooth muscle. Gen. Pharmacol. 20, 1-9   DOI   ScienceOn
27 Holzmann, S. (1983). cGMP as a possible mediator of coronary arterial relaxation by nicorandil (SG-75). J. Cardiovasc. Pharmacol. 5, 364-370   DOI
28 Holzmann, S., Kukovetz, W. R., Braida, C. and Poch, G. (1992). Pharmacological interaction experiments differentiate between glibenclamide-sensitive potassium channels and cyclic GMP as components of vasodilation by nicorandil. Eur. J. Pharmacol. 215, 1-7   DOI   ScienceOn
29 Ilno, M. (1989). Calcium-induced calcium release mechanism in guinea pig taenia caeci. J. Gen. Physiol. 94, 363-383   DOI   ScienceOn
30 Kukovetz, W. R., Holzmann, S., Braida C. and Poch, G. (1991). Dual mechanism of the relaxing effect of nicorandil by stimulation of cGMP formation and by hyperpolarisation. J. Cardiovasc. Pharmacol. 17, 627-633   DOI
31 Masuda, Y., Yoshizumi, M., Ishimura, Y., Katoh, I. and Oka, M. (1994). Effects of the potassium channel openers cromakalim and pinacidil on catecholamine secretion and calcium mobilization in cultured bovine adrenal chromaffin cells. Biochem. Pharmacol. 47, 1751-1758   DOI   ScienceOn
32 Ladona, M. G., Aunis, D., Gandia, A. G. and Garcia, A. G. (1987). Dihydropyridine modulation of the chromaffin cell secretory response. J. Neurochem. 48, 483-490   DOI
33 Lim, D. Y., Kim, C. D. and Ahn, K. W. (1992). Influence of TMB-8 on secretion of catecholamines from the perfused rat adrenal glands. Arch. Pharm. Res. 15, 115-125   DOI
34 Lim, D. Y., Park, G. H. and Park, S. H. (2000). Inhibitory mechanism of pinacidil on catecholamine secretion from the rat perfused adrenal gland evoked by cholinergic stimulation and membrane depoialrization. J. Auton. Pharmacol. 20, 123-132   DOI   ScienceOn
35 Murphy, K. P. and Greenfield, S. A. (1992). Neuronal selectivity of ATP-sensitive potassium channels in guinea-pig substantia nigra revealed by responses to anoxia. J. Physiol. (Lond) 453, 167-183   DOI
36 Noma, A. (1983). ATP-regulated single K channels in cardiac muscle. Nature 305, 147-148   DOI   ScienceOn
37 Oka, M., Isosaki, M. and Yanagihara, N. (1979). Isolated bovine adrenal medullary cells: studies on regulation of catecholamine synthesis and release. In Catecholamines: Basic and Clinical frontiers (E. Usdin, I. J. Kopin, J. Brachas, Ed.), pp. 70-72. Pergamon Press, Oxford
38 Perez-Vizcaino, F., Casis, O., Rodriguez, R., Comez, L. A., Garcia Rafanell, J. and Tamargo, J. (1993). Effect of the novel potassium channel opener, UR-8225, on contractile responses in rat isolated smooth muscle. Br. J. Pharmacol. 110, 1165-1171   DOI   ScienceOn
39 Seidler, N. W., Jona, I., Vegh, N. and Martonosi, A. (1989). Cyclopiazonic acid is a specific inhibitor of the $Ca^{2+}$-ATPase of sarcoplasimc reticulum. J. Biol. Chem. 264, 17816-17823
40 Petersen, O. H. and Maruyama, Y. (1984). Calcium-activated potassium channels and their role in secretion. Nature 307, 693-696   DOI   ScienceOn
41 Standen, N. B., Quatly, J. M., Davies, N. W., Brayden, J. E., Huang, Y. and Nelson, M. T. (1989). Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science 245, 177-1780   DOI
42 Suzuki, M., Muraki, K., Imaizumi, Y. and Watanabe, M. (1992). Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum $Ca^{2+}$-pump, reduces $Ca^{2+}$-dependent $K^{+}$ currents in guinea-pig smooth muscle cells. Br. J. Pharmacol. 107, 134-140   DOI   ScienceOn
43 Terbush, D. R. and Holz, R. W. (1992). Barium and calcium stimulate secretion from digitonin-permeabilized bovine adrenal chromaffin cells by similar pathways. J. Neurochem. 58, 680-687   DOI
44 Uceda, G., Artalejo, A. R., Lopez, M. G., Abad, F., Neher, E. and Garcia, A. G. (1992). $Ca^{2+}$-activated $K^{+}$ channels modulate muscarinic secretion in cat chromaffin cells. J. Physiol. 454, 213-230   DOI
45 Weston, A. H., Longmore, J., Newgreen, D. T., Edwards, G., Bray, K. M. and Duty, S. (1990). The potassium channel openers: a new class of vasorelaxants. Blood Vessels 27, 306-313
46 Quast, U. and Cook, N. S. (1989). Moving together: K+ channel openers and ATP-sensitive K+ channels. Trends Pharmacol. Sci. 10, 431-435   DOI   ScienceOn
47 Wakade, A. R. (1981). Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J. Physiol. 313, 463-480   DOI
48 Schmid-Antomarchi, H., Amoroso, S., Fosset, M. and Lazdunski, M. (1990). $K^{+}$ channel openers activate brain sulphonylureasensitive $K^{+}$ channels and block neurosecretion. Proc. Natl. Acad. Sci. U.S.A. 87, 3489-3492   DOI   ScienceOn
49 Uyama, Y., Imaizumi, Y. and Watanabe, M. (1992). Effects of cyclopiazonic acid, a novel $Ca^{2+}$-ATPase inhibitor on contractile responses in skinned ileal smooth muscle. Br. J. Pharmacol. 106, 208-214   DOI   ScienceOn
50 Wada, A., Kobayashi, H., Arita, M., Yanagihara, N. and Izumi, F. (1987). Potassium channels in cultured bovine adrenal medullary cells: effects of high K, veratridine and carbachol on 86rubidium efflux. Neuroscience 22, 1085-1092   DOI   ScienceOn
51 Watson, S. and Abbott, A. (1991). Receptor Nomenclature Supplement. Trends Pharmacol. Sci. (Suppl), 31-33
52 Weston, A. H., Southerton, J. S., Bray, K. M., Newgreen, D. T. and Taylor, S. G. (1988). The mode of action of pinacidil and its analogs P1060 and P1368: Results of studies in rat blood vessels. J. Cardiovasc. Pharmacol. 12 (Suppl), S10-S16
53 Wu, C. W., Leung, C. K. and Yung, W. H. (1996). Sulphonylureas reverse hypoxia induced $K^{+}$ conductance increase in substantia nigra pars reticulata neurones. Neuroreport 7, 2513-2517   DOI   ScienceOn