1 |
Tallarida, R. J. and Murray, R. B. (1987). Manual of pharmacologic calculation with computer programs. 2nd Ed. Speringer-Verlag, New York, pp. 132
|
2 |
Hammer, R. and Giachetti, A. (1982). Muscarinic receptor subtypes: and biochemical and functional characterization. Life Sci. 31, 2992-2998
|
3 |
Meisheri, K. D., Cipkus-Dubray, L. A., Hosner J. M. and Khan, S. (1991). Nicorandil-induced vasorelaxation: Functional evidence for channel-dependent and cyclic GMP-dependent components in a single vascular preparation. J. Cardiovasc. Pharmacol. 17, 903
DOI
|
4 |
Akaike, A., Mine, Y., Sasa, M. and Takaori, S. (1990). Voltage and current clamp studies of muscarinic and nicotinic excitation of the rat adrenal chromaffin cells. J. Pharmacol. Expt. Ther. 255, 333-339
|
5 |
Challiss, R. A. J., Jones, J. A., Owen, P. J. and Boarder, M. R. (1991). Changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass accumulations in cultured adrenal chromaffin cells in response to bradykinin and histamine. J. Neurochem. 56, 1083-1086
DOI
|
6 |
Anton, A. H. and Sayre, D. F. (1962). A study of the factors affecting the aluminum oxidetrihydroxy indole procedure for the analysis of catecholamines. J. Pharmacol. Exp. Ther. 138, 360-375
|
7 |
Ashford, M. L. J., Sturgess, N. C., Trout, N. J., Gardner, N. J. and Hales, C. N. (1988). Adenosine 5'-triphosphate-sensitive ion channels in neonatal rat cultured central neurones. Pflugers Arch. 412, 297-304
DOI
|
8 |
Aguilar-Bryan, L., Clement, J. P., Gonzalez, G., Kunjilwar, K., Babenko, A. and Bryan, J. (1998). Toward understanding the assembly and structure of KATP channels. Physiol. Rev. 78, 227-245
DOI
|
9 |
Asano, M., Masuzawa-Ito, K. and Matsuda, T. (1994). Vasodilating actions of cromakalim in resting and contracting states of carotid arteries from spontaneously hypertensive rats. European J. Pharmacol. 263, 121-131
DOI
ScienceOn
|
10 |
Ashcroft, F. M. (1988). Adenosine 5'-triphosphate-sensitive potassium channels. Annu. Rev. Neurosci. 11, 763-770
|
11 |
Benndorf, K., Thierfelder, S., Doepner, B., Gebhardt, C. and Hirche, H. (1997). Role of cardiac K-ATP channels during anoxia and ischemia. News Physiol. Sci. 12, 78-83
|
12 |
Burgoyne, R. D. (1984). Mechanism of secretion from adrenal chromaffin cells. Biochem. Biophys. Acta. 779, 201-216
DOI
ScienceOn
|
13 |
Cena, V., Nicolas, G. P., Sanchez-Garcia, P., Kirpekar, S. M. and Garcia, A. G. (1983). Pharmacological dissection of receptorassociated and voltage-sensitive ionic channels involved in catecholamine release. Neuroscience 10, 1455-1462
DOI
ScienceOn
|
14 |
Furukawa, K., Itoh, I., Kajiwara, M., Kitamura, K., Suzuki, H., Ito, Y. and Kuriyama, H. (1981). Effects of 2-nicotinamidoethyl nitrate on smooth muscle cells and on adrenergic transmission in guinea-pig and porcine mesenteric arteries. J. Pharmacol. Exp. Ther. 218, 260
|
15 |
Cook, N. S. (1988). The pharmacology of potassium channel and their therapeutic potential. Trends Pharmacol. Sci. 9, 21-28
DOI
ScienceOn
|
16 |
Garcia, A. G., Sala, F., Reig, J. A., Viniegra, S., Frias, J., Fonteriz, R. and Gandia, L. (1984). Dihydropyridine Bay-K-8644 activates chromaffin cell calcium channels. Nature 309, 69-71
DOI
ScienceOn
|
17 |
Lim, D. Y. and Hwang, D. H. (1991). Studies on secretion of catecholamines evoked by DMPP and McN-A-343 in the rat adrenal gland. Korean J. Pharmacol. 27, 53-67
과학기술학회마을
|
18 |
Cheek, T. R., O'Sullivan, A. J., Moreton, R. B., Berridge, M. J. and Burgoyne, R. D. (1989). Spatial localization of the stimulus-induced rise in cytosolic in bovine adrenal chromaffin cells: Distinct nicotinic and muscarinic patterns. FEBS Lett. 247, 429-434
DOI
ScienceOn
|
19 |
Corcoran, J. J. and Kirshner, N. (1983). Inhibition of calcium uptake, sodium uptake, and catecholamine secretion by methoxyverapamil (D600) in primary cultures of adrenal medulla cells. J. Neurochem. 40, 1106-1109
DOI
|
20 |
Edwards, G., Duty, S., Trezise, D. J. and Weston, A. H. (1992). Effects of potassium-channel modulators on the cardiovascular system. In Potassium channel modulators: Phamacological, molecular and clinical aspects (A. H. Weston, T. C. Hamilton, Ed.), pp. 369-463. Blackwell Science, Oxford
|
21 |
Endoh, M. and Taira, N. (1983). Relationship between relaxation and cyclic GMP formation caused by nicorandil in canine mesenteric arteries. Naunyn-Schmiedeberg's Arch. Pharmacol. 322, 319
DOI
ScienceOn
|
22 |
Finta, E. P., Harms, L., Sevick, J., Fischer, H. D. and Illes, P. (1993). Effects of potassium channel openers and their antagonists on rat locus coerulus neurones. Br. J. Pharmacol. 109, 308-315
DOI
ScienceOn
|
23 |
Heldman, E., Levine, M., Rabeh, L. and Pollard, H. B. (1989). Barium ions enter chromaffin cells via voltage-dependent calcium channels and induce secretion by a mechanism independent of calcium. J. Biol. Chem. 264, 7914-7920
|
24 |
Pierrefiche, O., Bischoff, A. M. and Richter, D. W. (1996). ATP-sensitive channels are functional in expiratory neurones of normoxic cats. J. Physiol. (Lond) 494, 399-409
|
25 |
Goeger, D. E. and Riley, R. T. (1989). Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on binding and permeability. Biochem. Pharmacol. 38, 3995-4003
DOI
ScienceOn
|
26 |
Hamilton, T. and Weston, A. (1989). Cromakalim, nicorandil and pinacidil: novel drugs which open potassium channels in smooth muscle. Gen. Pharmacol. 20, 1-9
DOI
ScienceOn
|
27 |
Holzmann, S. (1983). cGMP as a possible mediator of coronary arterial relaxation by nicorandil (SG-75). J. Cardiovasc. Pharmacol. 5, 364-370
DOI
|
28 |
Holzmann, S., Kukovetz, W. R., Braida, C. and Poch, G. (1992). Pharmacological interaction experiments differentiate between glibenclamide-sensitive potassium channels and cyclic GMP as components of vasodilation by nicorandil. Eur. J. Pharmacol. 215, 1-7
DOI
ScienceOn
|
29 |
Ilno, M. (1989). Calcium-induced calcium release mechanism in guinea pig taenia caeci. J. Gen. Physiol. 94, 363-383
DOI
ScienceOn
|
30 |
Kukovetz, W. R., Holzmann, S., Braida C. and Poch, G. (1991). Dual mechanism of the relaxing effect of nicorandil by stimulation of cGMP formation and by hyperpolarisation. J. Cardiovasc. Pharmacol. 17, 627-633
DOI
|
31 |
Masuda, Y., Yoshizumi, M., Ishimura, Y., Katoh, I. and Oka, M. (1994). Effects of the potassium channel openers cromakalim and pinacidil on catecholamine secretion and calcium mobilization in cultured bovine adrenal chromaffin cells. Biochem. Pharmacol. 47, 1751-1758
DOI
ScienceOn
|
32 |
Ladona, M. G., Aunis, D., Gandia, A. G. and Garcia, A. G. (1987). Dihydropyridine modulation of the chromaffin cell secretory response. J. Neurochem. 48, 483-490
DOI
|
33 |
Lim, D. Y., Kim, C. D. and Ahn, K. W. (1992). Influence of TMB-8 on secretion of catecholamines from the perfused rat adrenal glands. Arch. Pharm. Res. 15, 115-125
DOI
|
34 |
Lim, D. Y., Park, G. H. and Park, S. H. (2000). Inhibitory mechanism of pinacidil on catecholamine secretion from the rat perfused adrenal gland evoked by cholinergic stimulation and membrane depoialrization. J. Auton. Pharmacol. 20, 123-132
DOI
ScienceOn
|
35 |
Murphy, K. P. and Greenfield, S. A. (1992). Neuronal selectivity of ATP-sensitive potassium channels in guinea-pig substantia nigra revealed by responses to anoxia. J. Physiol. (Lond) 453, 167-183
DOI
|
36 |
Noma, A. (1983). ATP-regulated single K channels in cardiac muscle. Nature 305, 147-148
DOI
ScienceOn
|
37 |
Oka, M., Isosaki, M. and Yanagihara, N. (1979). Isolated bovine adrenal medullary cells: studies on regulation of catecholamine synthesis and release. In Catecholamines: Basic and Clinical frontiers (E. Usdin, I. J. Kopin, J. Brachas, Ed.), pp. 70-72. Pergamon Press, Oxford
|
38 |
Perez-Vizcaino, F., Casis, O., Rodriguez, R., Comez, L. A., Garcia Rafanell, J. and Tamargo, J. (1993). Effect of the novel potassium channel opener, UR-8225, on contractile responses in rat isolated smooth muscle. Br. J. Pharmacol. 110, 1165-1171
DOI
ScienceOn
|
39 |
Seidler, N. W., Jona, I., Vegh, N. and Martonosi, A. (1989). Cyclopiazonic acid is a specific inhibitor of the -ATPase of sarcoplasimc reticulum. J. Biol. Chem. 264, 17816-17823
|
40 |
Petersen, O. H. and Maruyama, Y. (1984). Calcium-activated potassium channels and their role in secretion. Nature 307, 693-696
DOI
ScienceOn
|
41 |
Standen, N. B., Quatly, J. M., Davies, N. W., Brayden, J. E., Huang, Y. and Nelson, M. T. (1989). Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science 245, 177-1780
DOI
|
42 |
Suzuki, M., Muraki, K., Imaizumi, Y. and Watanabe, M. (1992). Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum -pump, reduces -dependent currents in guinea-pig smooth muscle cells. Br. J. Pharmacol. 107, 134-140
DOI
ScienceOn
|
43 |
Terbush, D. R. and Holz, R. W. (1992). Barium and calcium stimulate secretion from digitonin-permeabilized bovine adrenal chromaffin cells by similar pathways. J. Neurochem. 58, 680-687
DOI
|
44 |
Uceda, G., Artalejo, A. R., Lopez, M. G., Abad, F., Neher, E. and Garcia, A. G. (1992). -activated channels modulate muscarinic secretion in cat chromaffin cells. J. Physiol. 454, 213-230
DOI
|
45 |
Weston, A. H., Longmore, J., Newgreen, D. T., Edwards, G., Bray, K. M. and Duty, S. (1990). The potassium channel openers: a new class of vasorelaxants. Blood Vessels 27, 306-313
|
46 |
Quast, U. and Cook, N. S. (1989). Moving together: K+ channel openers and ATP-sensitive K+ channels. Trends Pharmacol. Sci. 10, 431-435
DOI
ScienceOn
|
47 |
Wakade, A. R. (1981). Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J. Physiol. 313, 463-480
DOI
|
48 |
Schmid-Antomarchi, H., Amoroso, S., Fosset, M. and Lazdunski, M. (1990). channel openers activate brain sulphonylureasensitive channels and block neurosecretion. Proc. Natl. Acad. Sci. U.S.A. 87, 3489-3492
DOI
ScienceOn
|
49 |
Uyama, Y., Imaizumi, Y. and Watanabe, M. (1992). Effects of cyclopiazonic acid, a novel -ATPase inhibitor on contractile responses in skinned ileal smooth muscle. Br. J. Pharmacol. 106, 208-214
DOI
ScienceOn
|
50 |
Wada, A., Kobayashi, H., Arita, M., Yanagihara, N. and Izumi, F. (1987). Potassium channels in cultured bovine adrenal medullary cells: effects of high K, veratridine and carbachol on 86rubidium efflux. Neuroscience 22, 1085-1092
DOI
ScienceOn
|
51 |
Watson, S. and Abbott, A. (1991). Receptor Nomenclature Supplement. Trends Pharmacol. Sci. (Suppl), 31-33
|
52 |
Weston, A. H., Southerton, J. S., Bray, K. M., Newgreen, D. T. and Taylor, S. G. (1988). The mode of action of pinacidil and its analogs P1060 and P1368: Results of studies in rat blood vessels. J. Cardiovasc. Pharmacol. 12 (Suppl), S10-S16
|
53 |
Wu, C. W., Leung, C. K. and Yung, W. H. (1996). Sulphonylureas reverse hypoxia induced conductance increase in substantia nigra pars reticulata neurones. Neuroreport 7, 2513-2517
DOI
ScienceOn
|