• Title/Summary/Keyword: Battery.

Search Result 5,934, Processing Time 0.028 seconds

Design and development of less than 1Kw Lithium rechargeable battery pack

  • Kim, Sang-Bum;Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.104-108
    • /
    • 2018
  • Lithium-ion batteries have been used in energy storage systems (ESS), electric vehicles (EVs), etc. due to their high safety, fast charging and long lifecycle. This paper aims to improve the convenience of users by changing the wired battery stack used in the battery pack, wirelessly using RFID, reducing the internal volume of the battery pack, reducing the size of the battery pack. In this paper, we propose a battery management system which can provide the flexibility of battery pack expansion and maintenance by using lithium ion battery, battery management system (BMS) and wireless communication for light weight of 1Kw small battery pack. Also, by flexibly arranging the cell layout inside the battery pack and designing to reduce the size of the outer shape of the battery pack.

Improving the Efficiency for Hybrid Battery Combining Super Capacitor (슈퍼 커패시터를 결합한 하이브리드 전지의 효율 개선)

  • Jee, Seung-Hyun;Kim, Soo-Ho;Kim, Ju-Sun;Yoon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.5
    • /
    • pp.410-414
    • /
    • 2007
  • To prevent degradation of battery efficiency generated by serious current variation in rechargeable batteries, we researched a hybrid battery combining a super capacitor and a rechargeable battery. The hybrid battery shows high efficiency in a lifetime and a voltage drop. The hybrid battery was composed of a rechargeable battery, a current regulator and a super capacitor that can be used with supporting power. Before the experiment, the hybrid battery was simulated for current regulation and an electric current in a super capacitor by using the Pspice program. After that, we compared the efficiency of the hybrid battery with the efficiency of the normal battery. In this result, we demonstrated that the hybrid battery has a higher efficiency and a longer lifespan than the normal battery.

Improvement of Available Battery Capacity in Electric Vehicles

  • Liu, Yow-Chyi
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.497-506
    • /
    • 2013
  • This paper proposes a new method to improve the available battery capacity in electric vehicles by connecting lead-acid batteries with lithium-ion battery in parallel to supply power. In addition, this method combines the discharge characteristics of batteries to improve their efficiency and lower their cost for electric vehicles. A lithium-ion battery set is used to connect with N sets of lead-acid batteries in parallel. The lead-acid battery supplies the initial power. When the lead-acid battery is discharged by the load current until its output voltage drops to the cut-off voltage, the power management unit controls the lead-acid battery and changes it to discharge continuously with a small current. This discharge can be achieved by connecting the lead-acid battery to a lithium-ion battery in parallel to supply the load power or to discharge its current to another lead-acid or lithium-ion battery. Experimental results demonstrates that the available capacity can be improved by up to 30% of the rated capacity of the lead-acid batteries.

Dynamic battery modeling for battery simulator (배터리 시뮬레이터를 위한 동적 배터리 모델링)

  • Bae, Kyeung-cheol;Choi, Seong-chon;Kim, Ji-hwan;Jung, Yong-chae;Won, Chung-yuen
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.465-466
    • /
    • 2013
  • In this paper, we propose a dynamic battery equivalent modeling of lithium-ion batteries that can be applied to the battery simulator. In order to apply battery model to battery simulator, the profile of battery model should be equal to that of actual battery. Therefore, the equivalent model was selected by considering the transient and steady-state characteristics of lithium-ion batteries. Also, to obtain transient-state behavior of the battery, the RC values of the battery are selected through the lithium-ion battery charge/discharge experiments. The validity of proposed battery model is verified from the experimental results.

  • PDF

A Study on Battery Simulator Including Aging and Dynamic Impedance Model (노화 및 동특성 임피던스 모델을 포함한 배터리 시뮬레이터에 관한 연구)

  • Lee, Jong-Hak;Kim, Soo-Bin;Oh, Sang-Keun;Song, Seung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.171-180
    • /
    • 2020
  • This paper presents the implementation and control methods of a battery simulator. The proposed battery simulator can emulate the dynamic characteristics of any actual battery using the second RC ladder model of the equivalent circuit. Moreover, it can emulate the variation of impedance, which is the result of the change of battery characteristics due to the aging effect. The parameters of the battery simulator can be derived from the sequence of tests of the actual battery or only from the data supplied by the battery manufacturer. Proposed methods for the battery simulator are tested by extensive experiments. Test results show that the proposed battery simulator can emulate not only the dynamic characteristics but also the aging effects of the actual battery in real time.

A Study on the Cooling Performance Improvement of Pouch Battery Thermal Management System for Electric Vehicles (전기자동차 파우치형 배터리 열관리 시스템의 냉각성능 향상에 대한 연구)

  • Shin, Jeong-Hoon;Lee, Jun-Kyoung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.715-724
    • /
    • 2022
  • In many electric vehicles, large-capacity pouch-type lithium-ion battery packs are mainly used to increase the mileage on a single charge. The lithium ion battery should be operated within the temperature range of 25℃ to 40℃ because the battery performance can be rapidly deteriorated due to an increase in internal temperature. Battery thermal management system (BTMS) can give the suitable temperature conditions to battery by water cooling method. In this research, the heat transfer characteristics (the battery temperature distributions and the water flow characteristics) were analyzed by CFD method to investigate the thermal performance of the cooling plate with 4-pass water flow structure. Moreover, the effect of the presence of fins between the battery cell was identified. The fins made smooth temperature distributions between the battery cells due to the heat spreading and lower the average battery cells temperature.

Research Review of Sodium and Sodium Ion Battery (나트륨을 활용한 이차전지 연구동향)

  • Ryu, Cheol-Hwi;Kang, Seong-Gu;Kim, Jin-Bae;Hwang, Gab-Jin
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.1
    • /
    • pp.54-63
    • /
    • 2015
  • The secondary battery using sodium is investigating as one of power storage system and power in electric vehicles. The secondary battery using sodium as a sodium battery and sodium ion battery had merits such as a abundant resources, high energy density and safety. Sodium battery (sodium molten salt battery) is operated at lower temperature ($100^{\circ}C$) compared to NAS and ZEBRA battery ($300{\sim}350^{\circ}C$). Sodium ion battery is investigating as one of the post lithium ion battery. In this paper, it is explained for the principle and recent research trends in sodium molten salt and sodium ion battery.

Battery State Estimation Algorithm for High-Capacity Lithium Secondary Battery for EVs Considering Temperature Change Characteristics

  • Park, Jinho;Lee, Byoungkuk;Jung, Do-Yang;Kim, Dong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1927-1934
    • /
    • 2018
  • In this paper, we studied the state of charge (SOC) estimation algorithm of a high-capacity lithium secondary battery for electric vehicles (EVs) considering temperature characteristics. Nonlinear characteristics of high-capacity lithium secondary batteries are represented by differential equations in the mathematical form and expressed by the state space equation through battery modeling to extract the characteristic parameters of the lithium secondary battery. Charging and discharging equipment were used to perform characteristic tests for the extraction of parameters of lithium secondary batteries at various temperatures. An extended Kalman filter (EKF) algorithm, a state observer, was used to estimate the state of the battery. The battery capacity and internal resistance of the high-capacity lithium secondary battery were investigated through battery modeling. The proposed modeling was applied to the battery pack for EVs to estimate the state of the battery. We confirmed the feasibility of the proposed study by comparing the estimated SOC values and the SOC values from the experiment. The proposed method using the EKF is expected to be highly applicable in estimating the state of the high-capacity rechargeable lithium battery pack for electric vehicles.

Computational Design of Battery System for Automotive Applications (전기자동차 배터리 시스템 개발을 위한 전산설계기술)

  • Jung, Seunghun
    • Journal of Institute of Convergence Technology
    • /
    • v.10 no.1
    • /
    • pp.37-40
    • /
    • 2020
  • Automotive battery system consists of various components such as battery cells, mechanical structures, cooling system, and control system. Recently, various computational technologies are required to develop an automotive battery system. Physics-based cell modeling is used for designing a new battery cell by conducting optimization of material selection and composition in electrodes. Structural analysis plays an important role in designing a protective system of battery system from mechanical shock and vibration. Thermal modeling is used in development of thermal management system to maintain the temperature of battery cells in safe range. Finally, vehicle simulation is conducted to validate the performance of electric vehicle with the developed battery system.

A 3kW Battery Charger with Battery Diagnosis Function Using Online Impedance Spectroscopy (온라인 임피던스 분광법을 이용한 배터리 진단 기능을 가진 3kW 충전기)

  • Doan, Van-Tuan;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.68-69
    • /
    • 2014
  • In the battery based applications such as electric vehicle and energy storage system, the performance of the system highly depends on the reliability of the battery. However, it is difficult to obtain the accurate information about the state-of-health (SOH) of battery during its operation. In this paper a 3kw battery charger with battery diagnosis function which can estimate the SOH of the battery by using online impedance spectroscopy technique is introduced. For the charger phase shift full bridge converter with synchronous rectification has been adopted to implement the charge and diagnosis functions. The impedance spectroscopy is performed after the charge to obtain the information about the internal impedance of the battery module, hence the SOH can be estimated online by observing the impedance variation of the battery over time. All the design procedure of the proposed charger is detailed and the feasibility of the system is verified by the experimental results.

  • PDF