• Title/Summary/Keyword: Battery size

Search Result 490, Processing Time 0.022 seconds

Effects of Precursor Co-Precipitation Temperature on the Properties of LiNi1/3Co1/3Mn1/3O2 Powders (전구체 공침 온도가 LiNi1/3Co1/3Mn1/3O2 분말의 특성에 미치는 영향)

  • Choi, Woonghee;Kang, Chan Hyoung
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.287-296
    • /
    • 2016
  • $Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)_2$ powders have been synthesized in a continuously stirred tank reactor via a co-precipitation reaction between aqueous metal sulfates and NaOH using $NH_4OH$ as a chelating agent. The co-precipitation temperature is varied in the range of $30-80^{\circ}C$. Calcination of the prepared precursors with $Li_2CO_3$ for 8 h at $1000^{\circ}C$ in air results in Li $Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ powders. Two kinds of obtained powders have been characterized by X-ray diffraction (XRD), scanning electron microscopy, particle size analyzer, and tap density measurements. The co-precipitation temperature does not differentiate the XRD patterns of precursors as well as their final powders. Precursor powders are spherical and dense, consisting of numerous acicular or flaky primary particles. The precursors obtained at 70 and $80^{\circ}C$ possess bigger primary particles having more irregular shapes than those at lower temperatures. This is related to the lower tap density measured for the former. The final powders show a similar tendency in terms of primary particle shape and tap density. Electrochemical characterization shows that the initial charge/discharge capacities and cycle life of final powders from the precursors obtained at 70 and $80^{\circ}C$ are inferior to those at $50^{\circ}C$. It is concluded that the optimum co-precipitation temperature is around $50^{\circ}C$.

Fabrication of Fe3O4/Fe/Graphene nanocomposite powder by Electrical Wire Explosion in Liquid Media and its Electrochemical Properties (액중 전기선 폭발법을 이용한 Fe3O4/Fe/그래핀 나노복합체 분말의 제조 및 전기화학적 특성)

  • Kim, Yoo-Young;Choi, Ji-Seub;Lee, Hoi-Jin;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.24 no.4
    • /
    • pp.308-314
    • /
    • 2017
  • $Fe_3O_4$/Fe/graphene nanocomposite powder is synthesized by electrical wire explosion of Fe wire and dispersed graphene in deionized water at room temperature. The structural and electrochemical characteristics of the powder are characterized by the field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, field-emission transmission electron microscopy, cyclic voltammetry, and galvanometric discharge-charge method. For comparison, $Fe_3O_4$/Fe nanocomposites are fabricated under the same conditions. The $Fe_3O_4$/Fe nanocomposite particles, around 15-30 nm in size, are highly encapsulated in a graphene matrix. The $Fe_3O_4$/Fe/graphene nanocomposite powder exhibits a high initial charge specific capacity of 878 mA/g and a high capacity retention of 91% (798 mA/g) after 50 cycles. The good electrochemical performance of the $Fe_3O_4$/Fe/graphene nanocomposite powder is clearly established by comparison of the results with those obtained for $Fe_3O_4$/Fe nanocomposite powder and is attributed to alleviation of volume change, good distribution of electrode active materials, and improved electrical conductivity upon the addition of graphene.

The Analysis of Transmission Power Control Model for Energy Efficiency in Body Sensor Systems (에너지 효율을 위한 인체 센서 시스템의 전송 전력 조절 모델 분석)

  • Hong, Jin-A;Kim, Namgi
    • Journal of Internet Computing and Services
    • /
    • v.15 no.4
    • /
    • pp.1-8
    • /
    • 2014
  • In wireless body sensor system(WB-SNSs), unlike existing sensor network system, the size of device is small and amount of battery is considerably limited. And various channel environments can be made by link channel characteristic, human movements, sensor placements, transmission power control(TPC) algorithms and so on. In this paper, therefore we take diverse experiments with totally considerated environments to overcome these restrictions and to manage the energy efficiently and find the value of target received signal strength indicator(RSSI) based on diverse factors such as human movements, sensor placements, and TPC algorithms. And we conduct analysis in terms of energy consumption and packet delivery rate(PDR) based on the experimental results. Through these analysis, we compare and evaluate the efficiency according to setup values of Target RSSI and Target RSSI range suitable for wireless body sensor network system.

Design and Performance Evaluation of Maximum Remaining Energy Constrained Directed Diffusion Routing Algorithm for Wireless Sensor Networks (센서 네트워크를 위한 최대 잔류 에너지 제한 Directed Diffusion 라우팅 알고리즘의 설계 및 성능 분석)

  • Hwang, An-Kyu;Lee, Jae-Yong;Kim, Byung-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11A
    • /
    • pp.995-1003
    • /
    • 2005
  • Since the sensor network nodes have a small size and limited battery power, there have been many studies for reducing their energy consumption. Each sensor node can show different energy usage according to the frequency of event sensing and data transmission, and thus they have different lifetime. So, some nodes may run out of energy that causes disconnection of paths and reduction of network lifetime. In this paper, we propose a new energy-efficient routing algorithm for sensor networks that selects a least energy-consuming path among the paths formed by node with highest remaining energy and provides long network lifetime and somewhat uniform energy consumption by nodes. Simulation results show that our algorithm extends the network lifetime and enhances the network reliability by maintaining relatively uniform remaining energy distribution among sensor nodes.

Design of Reassembly Unit Modular Wearable Device (단위 모듈 기반의 재조립 가능한 웨어러블 디바이스 구조 설계)

  • Lee, Geo-Yun;Kang, Soon-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.3
    • /
    • pp.338-346
    • /
    • 2016
  • Wearable Device has various constraint about battery power consumption, size, weight, etc, because the devices is worn and operated by person and provide services. So, if a device includes too many functions, it dose not satisfies the constraint and lose price competitiveness due to become expensive. Therefore we suggest that make reassembly Unit Modular Device witch has common used functions in wearable devices and user can receive various services to reassemble Unit Modules. It is comprised of frames and modules. Each module has various functions. Each frames help module to communicate each modules. To realize this device, we design to guarantee each services to use necessary modules, to give priority to modules depending on the important of the task, to set that does not use to low energy mode.

Electromagnetic wave Shielding Materials for the Wireless Power Transfer Module in Mobile Handset (휴대단말기 무선전력 전송모듈용 전자기파 차폐소재)

  • Bae, Seok;Choi, Don-Chul;Hyun, Soon-Young;Lee, Sang Won
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.2
    • /
    • pp.68-76
    • /
    • 2013
  • Currently, wireless power transmission technology based on magnetic induction was employed in battery charger for smart phone application. The system consists of wireless power transmitter in base station and receiver in smart phone. Size and thickness of receiver was strictly limited in the newest smart phone. In order to achieve high efficiency of a tiny small wireless power receiver module, sub-millimeter thick electromagnetic wave shielding sheet having high permeability and Q was essential component. It was found that magnetic field from transmitter to receiver can be intensified by sufficient shielding cause to minimize leakage magnetic flux by those magnetic properties. This leads to high efficiency of wireless power transmission and protects crucial integrated circuit of main board from electromagnetic noise. The important soft magnetic materials were introduced and summarized for the current small-power wireless power charger and NFC application and mid-power home appliance and high-power automotive application in the near future.

A Study on the Optimal System Sizing of the Standalone Photovoltaic Power Generation System for Uninterruptible Power Supply (독립형 태양광 발전 시스템의 무정전 전력공급을 위한 시스템 용량 최적 선정에 관한 연구)

  • Kim, Ki-Young;Choi, Woojin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.2
    • /
    • pp.77-85
    • /
    • 2018
  • Renewable energy has been increasingly used and widely acclaimed as one of the solutions to rampant environmental problems. Among numerous kinds of renewable sources, the penetration rate of the PV system is relatively higher than that of others due to ease of installation. However, one disadvantage of the PV system is its dependence on weather condition. The PV system is especially critical when it is used for standalone systems because it cannot operate when the power generated from a PV module is not enough. Therefore, PV systems are often used with an energy storage system, such as batteries, to store backup energy when the weather condition is insufficient to supply power to the system. Blackout time can be reduced by increasing the size of the energy storage system, but it is a trade-off with system cost. In this work, optimal sizing of a standalone PV system is proposed to supply power to the system without blackout. The sizing of PV modules and batteries is performed by a simulation based on actual irradiation data collected during the past five years. The Life cycle costing of each system is evaluated to determine an optimal set of PV modules and batteries among several different combinations. The standalone PV system designed by the proposed method can supply power to the system with no interruption as long as the weather condition is similar to those of the past five years.

A Study of 2.45GHz Active RF System for Real Time Location (실시간 위치추적을 위한 2.45GHz 능동형 고주파 시스템에 관한 연구)

  • Kim, Jin-Young;Jung, Young-Sub;Kang, Joon-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.3
    • /
    • pp.43-49
    • /
    • 2008
  • The Real Time Location System (RTLS) is very important in the ubiquitous society for real time tracking of men, high price assets, and logistics products. In this work, we developed an active RF system for RTLS and tested its performance. The RTLS system developed in this work was constructed of three active readers and one active tag. The small size tag developed in this work operated with a coin type battery. To make the tag smaller, we used an internal PCB antenna and a chip antenna. We tested the performance of the tag. To reduce the manufacturing cost of our RF system, we used low price RF transceiver CC2510 chip-set. The CC2510 chip-set provided RSSI(Received Signal Strength Indicator) signal which could be used to determine the distances between an active tag and three active readers.

  • PDF

Design and Implementation of eRTOS Real-time Operating Systems for Wearable Computers (웨어러블 컴퓨터를 위한 저전력 실시간 운영체제 eRTOS 설계 및 구현)

  • Cho, Moon-Haeng;Choi, Chan-Woo;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.9
    • /
    • pp.42-54
    • /
    • 2008
  • In recent years, embedded systems have been expanding their application domains from traditional embedded systems such as military weapons, robots, satellites and digital convergence systems such as celluar phones, PMP(Portable Multimedia Player), PDAs(Personal Digital Assistants) to Next Generation Personal Computers(NGPCs) such as eating PCs, wearable computers. The NGPCs are network-based, human-centric digital information devices diverged from the traditional PCs used mainly for document writing, internet searching and database management. Wearable computers with battery capacity and memory size limitations have to use real-time operating systems with small footprints and low power management techniques to provide user's QoS in spite of hardware constraints. In this paper, we have designed and implemented a low-power RTOS (called eRTOS) for wearable computers. The implemented eRTOS has 18KB footprints and the dynamic power management and the device power management schemes are adapted in it. Experimental results with wearable computer applications show that the low power techniques could save energy up to 47 %.

A 0.8V 816nW Delta-Sigma Modulator Applicaiton for Cardiac Pacemaker (카디악 페이스메이커용 0.8V 816nW 델타-시그마 모듈레이터)

  • Lee, Hyun-Tae;Heo, Dong-Hun;Roh, Jeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.1
    • /
    • pp.28-36
    • /
    • 2008
  • This paper discusses theimplementation of the low-voltage, low-power, third-order, 1-bit switched capacitor delta-sigma modulator of the implantable cardiac pacemaker. The distributed, feed-forward structure and bulk-driven OTA were used in order to achieve an efficient operation under a supply voltage of 1V or lower. The designed modulator has a dynamic range of 49dB at 0.9V supply voltage and consumes 816nW of power. Such a significant reduction in power consumption allows diverse applications, not only in pacemakers, but also in implantable biomedical devices that operate with limited battery power. The core chip size of the modulator is $1000{\mu}m*500{\mu}m$ manufactured, with the $0.18{\mu}m$ CMOS standard process.