• Title/Summary/Keyword: Battery power modules

Search Result 70, Processing Time 0.032 seconds

The Characteristics of Asymmetric Hybrid Supercapacitor Cells and Modules for Power Quality Stabilization (전력품질 안정화용 비대칭 하이브리드 슈퍼커패시터 셀 및 모듈 특성)

  • Lee, Byung-Gwan;Maeng, Ju-Cheul;Lee, Joung-Kyu;Yoon, Jung-Rag
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.617-621
    • /
    • 2016
  • In addition to the energy storage facilities based on high power technologies, Electric double layer capacitors(EDLC) are today's candidate for power quality stabilization. However, its low energy density is often inhibiting factor for application of electric power industry. Hybrid supercapacitor is an promising energy storage device that positioned between conventional EDLC and Li-ion battery. This paper describes the preparation and characteristics of a hybrid supercapacitor and module for power quality stabilization. A cylindrical 3200F hybrid supercapacitor ($60{\times}74.5mm$) was assembled by using the $Li_4Ti_5O_{12}$ electrode as an anode and activated carbon as a cathode. It shows 2.5 times higher energy density than conventional EDLC with the same volume. In order to determine the characteristics of the hybrid supercapacitor Module for uninterruptible power supply (UPS), hybrid supercapacitor cells were connected in series with active balancing circuit. At even the high current density of 14A(10C), Module prepared by 18 cells showed the capacitance of 170F at 30~50V, suggesting the applicability for UPS.

Configuration and Ground Tests of Solar Cell and Fuel Cell Powered System for Long Endurance UAV (장기체공 무인기용 태양전지-연료전지를 활용한 동력원 구성 및 지상시험)

  • Park, Byeongseob;Kim, Hyuntak;Baek, Seungkwan;Kwon, Sejin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.94-101
    • /
    • 2015
  • Each of power systems of solar cell and fuel cell were configured and validated for long endurance UAV, as the preliminary research for the integration of power systems. Solar power system consisted of solar modules fabricated by solar cells of Sunpower's C60, commercial solar MPPT controller and Li-po battery, and then was validated. The re-start characteristics of hydrogen production from $NaBH_4$ hydrolysis was validated for operating the commercial fuel cell. The average voltage drop of Li-po battery in solar power system was -2.9 V/hour. The performance of re-start characteristics of $NaBH_4$ hydrolysis was stable in sequence mode of mission profile. Each of single systems were satisfied for the proposed mission profile.

Design and Analysis of a Battery Charge and Discharge Regulator of Communication Satellite (통신위성 배터리 충,방전기 설계 및 해석)

  • Choe,Jae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.118-126
    • /
    • 2003
  • In this study, a battery charge and discharge regulator of modular type is designed as paralleled bi-directional converter that is possible to provide the power without failure not only in the steady state but also in the transient period by the step load variation or the unexpected faults among the converter modules. Each converter module is designed to get stability, performance, reliability, and maintainability and the average current mode method used for controller has the advantages such as noise immunity, fast response, and the real average current signal acquisition. The equivalent model and small signal model for the paralleled battery chargerIdischarger are presented, and also the transfer functions are analyzed for the CCM(Continuous Charge Mode), CDM(Continuous Discharge Mode) and DDM(Discontinuous Discharge Mode). The experiments of the paralleled bi-directional converter are carried out in the step load variation, and in faults of one converter module respectively. And the performance of paralleled bi-directional converter is verified via the experimental results.

Low price type inspection and monitoring system of lithium ion batteries for hybrid vessels (하이브리드 선박용 리튬 배터리의 저가형 감시시스템 구현)

  • Kwon, Hyuk-joo;Kim, Min-kwon;Lee, Sung-geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.28-33
    • /
    • 2016
  • Batteries are used for main power engine in the fields such as mobiles, electric vehicles and unmanned submarines, for starter and lamp driver in general automotive, for emergency electric source in ship. These days, lead-acid and the lithium ion batteries are increasingly used in the fields of the secondary battery, and the lead-acid battery has a low price and safety comparatively, The lithium ion battery has a high energy density, excellent output characteristics and long life, whereas it has the risk of explosion by reacting with moisture in the air. But Recently, due to the development of waterproof, fireproof, dustproof technology, lithium batteries are widely used, particularly, because their usages are getting wider enough to be used as a power source for hybrid ship and electric propulsion ship, it is necessary to manage more strictly. Hybrid ship has power supply units connected to the packets to produce more than 500kWh large power source, and therefore, A number of the communication modules and wires need to implement the wire inspection and monitor system(WIIMS) that allows monitoring server to transmit detecting voltage, current and temperature data, which is required for the management of the batteries. This paper implements a low price type wireless inspection and monitoring system(WILIMS) of the lithium ion battery for hybrid vessels using BLE wireless communication modules and power line modem( PLM), which have the advantages of low price, no electric lines compared to serial communication inspection systems(SCIS). There are state of charge(SOC), state of health(SOH) in inspection parts of batteries, and proposed system will be able to prevent safety accidents because it allows us to predict life time and make a preventive maintenance by checking them at regular intervals.

A Study of the Photo-Electric Efficiency of Dye-Sensitized Solar Cells Under Lower Light Intensity

  • Kim, Hee-Je;Kim, Yong-Chul;Hong, Ji-Tae;Kim, Mi-Jeong;Seo, Hyun-Woong;Park, Je-Wook;Choi, Jin-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.513-517
    • /
    • 2007
  • To elucidate possible challenges for outdoor practical use of dye-sensitized solar cells (DSCs), we compared conventional Si solar cells with DSCs. DSC modules still require a larger area than conventional Si solar modules to attain the same rated output because of lower photoelectron-chemical conversion efficiency. However, in backup systems by using batteries, the measured data shows that DSCs generated 15% more electricity than Si solar cells of the same rated output power in the same interval of cloudy daylight. Moreover, the battery charging time of DSCs is about 1 hour faster than the same rate of Si solar cells under outdoor cloudy daylight. This result also indicates that conversion efficiency obtained by the certified condition less than AM 1.5 condition does not always coincide with the electricity generated outdoors daily, and it is not a crucial measure to evaluate the performance of solar cells.

Development of 6kW ZVS Boost Converter by 4-Parallel Operation (4-병렬 제어 기법을 적용한 6kW 영전압 스위칭 승압형 컨버터 개발)

  • Rho, Min-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.86-92
    • /
    • 2009
  • This paper presents development of 6kw ZVS(Zero Voltage Switching) boost converter by 4-parallel operation. To realize a high capacity converter with 6 kw, 4-parallel operation of 1.5kW unit module is proposed in this paper. To meet high ratio input to output voltage, isolated type booster converter is designed. To achieve ZVS operation of 4-switches of full bridge and protect a voltage overshoot caused by switch turn-off, simple active-clamp circuit is applied to the primary side. For parallel operation of 4-modules, master-slave control method is proposed to achieve input current sharing of 4-unit converter modules accurately. For performance tests, simulation is carried out. Also, load and experimental tests of the developed booster converter, 230Vdc/6kW, are carried out under various conditions. For field tests, the developed converter is applied for boosting a battery power to high DC_link voltage for a VSI inverter which starts a micro-turbine(MT) installed in vehicle and it's performance is verified through high speed motoring a MT up to tens of thousands of rpm.

A Study on Control Algorithms of Efficiency Improvement Device for PV System Operation using Li-ion Battery (리튬이온전지를 이용한 태양광전원의 운용효율향상장치의 제어 알고리즘에 관한 연구)

  • Park, Ji-Hyun;Kim, Byung-Mok;Lee, Hu-Dong;Nam, Yang-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.590-597
    • /
    • 2018
  • Recently, the installation of PV systems has been increasing due to the worldwide interest in eco-friendly and renewable solar energy. On the other hand, the output power of PV systems is influenced strongly by the surrounding weather conditions. In addition, the entire operation efficiency of PV systems may be decreased considerably even if only some of the PV modules are in the shade. In other words, the existing control method at which strings with modules in series are connected to an inverter may be not operated in the case that the string voltage in partial shade is lower than the operating range of the grid connected inverter. To overcome these problems, this paper proposes an operation efficiency improvement device of a PV system using a Li-ion battery, which can compensate for the voltage of each string in the PV system when it is partially shaded. In addition, this paper presents the modeling of the operation efficiency improvement device, including PV strings, Li-ion battery and a 3-Phase grid inverter based on the PSIM S/W. From the simulation results, it was confirmed that the proposed control method can improve the operating efficiency of PV systems by compensating for the string voltage with partial shade.

Power Sharing and Cost Optimization of Hybrid Renewable Energy System for Academic Research Building

  • Singh, Anand;Baredar, Prashant
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1511-1518
    • /
    • 2017
  • Renewable energy hybrid systems look into the process of choosing the finest arrangement of components and their sizing with suitable operation approach to deliver effective, consistent and cost effective energy source. This paper presents hybrid renewable energy system (HRES) solar photovoltaic, downdraft biomass gasifier, and fuel cell based generation system. HRES electrical power to supply the electrical load demand of academic research building sited in $23^{\circ}12^{\prime}N$ latitude and $77^{\circ}24^{\prime}E$ longitude, India. Fuzzy logic programming discover the most effective capital and replacement value on components of HRES. The cause regarding fuzzy logic rule usage on HOMER pro (Hybrid optimization model for multiple energy resources) software program finds the optimum performance of HRES. HRES is designed as well as simulated to average energy demand 56.52 kWh/day with a peak energy demand 4.4 kW. The results shows the fuel cell and battery bank are the most significant modules of the HRES to meet load demand at late night and early morning hours. The total power generation of HRES is 23,794 kWh/year to the supply of the load demand is 20,631 kWh/year with 0% capacity shortage.

High Efficient Inductive Power Supply System Implemented for On Line Electric Vehicles

  • Huh, Jin;Park, Eun-Ha;Jung, Gu-Ho;Rim, Chun-Taek
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.105-110
    • /
    • 2009
  • The On Line Electric Vehicles(OLEV) that can pick up inductive power from underground coils on driving with high efficiency have been developed this year, and is now proposed in this paper. The IPS(Inductive Power Supply) system consists of power supply inverters, power supply rails, pick up modules, and a regulator. There are 3 generations of IPS have been developed so far, and the $4^{th}$ generation IPS is being developed. The $1^{st}$ generation has been demonstrated this Feb. 27, which is equipped with mechanically auto tracking pick-up module with 1cm air gap, and showed 80% power efficiency. The $2^{nd}$ generation IPS applied to an 120kW (average)/240kW(peak) motor powered electric bus has 17cm air gap with 72% power efficiency. For the $2^{nd}$ generation IPS, the Power supply inverter has 440V, 3phase input and 200A @ 20kHz output. The test power supply rail of 240m long is segmented by 60m each, where newly developed core structure and power cable are constructed under the road covered with asphalt of 5cm thickness. The pick-up modules which consist of core, winding wire, and rectifiers are fixed to the bottom of the bus which can carry more than 40 passengers and can pick up max. 60kW. To remove parasitic component and to transfer maximum power between them resonant circuit topology is applied to the primary and secondary sides. The EMF level is below 62.5mG at 1.75m from the center of the road to meet the regulation. Several effective ways of reducing EMF levels have been developed. In addition, effective ways to solve problems related high frequency power cables buried in ground and it's proof from soil have been studied also. This development shows that the IPS system is capable of supplying enough power to the pick-up of OLEV and can reduce battery size, weight and cost, which means the IPS with OLEV is one of the best candidate for EV.

  • PDF

Starting current estimation of the parallel connected large capacity battery modules (병렬 연결된 대용량 리튬 배터리 모듈의 기동전류 예측 연구)

  • Lee, Seongjun;Kim, Jonghoon;Park, Joung-hu;Ha, Mirim;Song, Hyun-Chul
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.335-336
    • /
    • 2017
  • 본 논문에서는 대용량 배터리 모듈이 병렬 연결되어 있는 에너지 저장장치 시스템의 초기 기동 조건시 투입 초기의 전류를 추정할 수 있는 방법을 제시한다. 제안된 방법은 배터리 모듈을 구성하고 있는 리튬 배터리 모듈의 단자 전압 및 배터리 모듈 저항 데이터를 이용하여 병렬 연결하고자 하는 배터리의 전류를 예측하는 방법으로써 배터리 모듈의 기동 투입 가능여부 등 온 오프 시퀀스 로직에 적용할 수 있다.

  • PDF