• Title/Summary/Keyword: Battery model

Search Result 584, Processing Time 0.028 seconds

Power-Minimizing DVFS Algorithm for a Video Decoder with Buffer Constraints (영상 디코더의 제한된 버퍼를 고려한 전력 최소화 DVFS 방식)

  • Jeong, Seung-Ho;Ahn, Hee-June
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9B
    • /
    • pp.1082-1091
    • /
    • 2011
  • Power-reduction techniques based on DVFS(Dynamic Voltage and Frequency Scaling) are crucial for lengthening operating times of battery powered mobile systems. This paper proposes an optimal DVFS scheduling algorithm for decoders with memory size limitation on display buffer, which is realistic constraints not properly touched in the previous works. Furthermore, we mathematically prove that the proposed algorithm is optimal in the limited display buffer and limited clock frequency model, and also can be used for feasibility check. Simulation results show the proposed algorithm outperformed the previous heuristic algorithms by 7% in average, and the performance of all algorithms using display buffers saturates at about 10 frame size.

Development of Piezoelectric Energy Harvesting Device and Experiments (압전체를 이용한 에너지 수집 장치 개발 및 실험)

  • Kim, Ki-Young;Kwak, Moon-K.;Kang, Ho-Yong;Kim, Nae-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.81-89
    • /
    • 2008
  • This paper is concerned with the development of the piezoelectric energy harvesting(PEH) device for ubiquitous sensor node(USN). The USN needs auxiliary power to lengthen its operational life. In this study, the piezoelectric energy harvesting system consisting of a cantilever with a tip mass and piezoelectric wafer was investigated in detail both theoretically and experimentally. The dynamic model for the addressed system was derived using the assumed mode method. The resulting equations of motion were expressed in matrix form, which had never been developed before. The power output characteristics of the PEH was then calculated and discussed. Various experiments were carried out to investigate the charging characteristics of electrical components. Theoretical and experimental results showed that the PEH was able to charge a battery with ambient vibrations but still needed an effective mechanism which can convert mechanical energy to electrical energy and an optimal electric circuit which dissipates small energy.

  • PDF

A Study on the Structural Integrity of an Auxiliary Feed Water Pump in a Nuclear Power Plant (원자력 발전소 보조급수펌프의 구조 건전성에 관한 연구)

  • Kim, Chae-Sil;Cho, Bang-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.3
    • /
    • pp.42-48
    • /
    • 2014
  • The auxiliary-feed-water pump (AFWP) used to supply water during a station black out situation at nuclear power plants should meet the seismic qualification regulations stipulated in IEEE Std 323 and 344, so as to withstand earthquakes or dangerous situations. Here, we establish a model for the estimation of the structural integrity of this type of pump. If the natural frequency that results from a modal analysis is less than 33 Hz, we adopt a dynamic analysis, instead of a static analysis. A dynamic analysis was carried out taking into consideration seismic conditions such as the floor response spectra (FRS), an operation-base earthquake (OBE), and a safe-shutdown earthquake (SSE). Finally, an analytical estimation of the structural integrity of an AFWP is made through a comparison of calculated values and allowable values. If the result is less than the allowable stress, the pump is deemed to have good structural integrity. In addition, future studies will involve a stability check for rotor accidents that may occur during the operation of the pump.

Dynamic Modeling of Piezoelectric Energy Harvesting Device and Experiments (압전 에너지 수집 장치의 동적모델링 및 실험)

  • Kwak, Moon-K.;Kim, Ki-Young;Kang, Ho-Yong;Kim, Nae-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.6
    • /
    • pp.632-641
    • /
    • 2008
  • This paper is concerned with the development of the piezoelectric energy harvesting(PEH) device for ubiquitous sensor node(USN). The USN needs auxiliary power to lengthen its operational life. In this study, the piezoelectric energy harvesting system consisting of a cantilever with a tip mass and piezoelectric wafer was investigated in detail both theoretically and experimentally. The dynamic model for the addressed system was derived using the assumed mode method. The resulting equations of motion were expressed in matrix form, which had never been developed before. The power output characteristics of the PEH was then calculated and discussed. Various experiments were carried out to investigate the charging characteristics of electrical components. Theoretical and experimental results showed that the PEH was able to charge a battery with ambient vibrations but still needed an effective mechanism which can convert mechanical energy to electrical energy and an optimal electric circuit which dissipates small energy.

Optimized Design and Coordinated Control for Stand-alone DC Micro-grid (독립형 DC 마이크로그리드의 최적화 설계와 협조적 제어)

  • Han, Tae-Hee;Lee, Ji-Heon;Kim, Hyun-Jun;Han, Byung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.63-71
    • /
    • 2013
  • This paper describes the coordinated droop control method for stand-alone type DC micro-grid to improve reliability and utilization of distributed generations and energy storage. The stand-alone type DC micro-grid consists of several distributed generations such as a wind power generation, solar power and micro-turbine, and energy storage. The proposed method which is based on autonomous control method shows high reliability and stability through coordinated droop control of distributed generations and energy storage and also capability of battery management. The operation of stand-alone type DC micro-grid was analyzed using detail simulation model with PSCAD/EMTDC software. Based on simulation results, a hardware simulator was built and tested with commercially available components and performance of system was verified.

Component Modeling of Micro SMES Based Design of Stabilizer Simulation for Power Supply using PSCAD/EMTDC (Micro SMES를 이용한 전원공급 안정화장치 시뮬레이션을 위한 PSCAD/EMTDC 컴포넌트 모델링)

  • Kim, Bong-Tae;Park, Min-Won;Seong, Ki-Chul;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.228-230
    • /
    • 2002
  • Recently, electric power reliability of our country has been improved. However, there are still remaining problems which are short-duration variations like instantaneous and momentary interruption and voltage sag by nature calamity ; typhoon, lightning, snow, etc. Besides, power quality ; harmonics, caused by using power electronics equipments, become a hot issue Malfunction of controller and stop machinery, and losing the important data are caused by poor power quality at a couple of second. Due to those, UPS, which is made up battery, has being used, but there are several disadvantages ; long charge and discharge time, environmental problem by acid and heavy metal, and short life time. As generally know, micro-SMES is a method to settle those mentioned. However, there need huge system apparatuses in order to verify the effect of system efficiency and stability considering the size of micro-SMES, the sort of converter type, and various conditions ; inner temperature, magnetic field, quench characteristic of micro-SMES, and etc. In this paper, in order to bring the mentioned above to a settlement, a micro-SMES is modeled with characteristics of micro-SMES is interfaced to EMTOC program using Fortran program interface method. We obtained hopeful answers and made the simulation model of micro SMES.

  • PDF

Energy-Saving Distributed Algorithm For Dynamic Event Region Detection (역동적 이벤트 영역 탐색을 위한 에너지 절약형 분산 알고리즘)

  • Nhu, T.Anh;Na, Hyeon-Suk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06d
    • /
    • pp.360-365
    • /
    • 2010
  • In this paper, we present a distributed algorithm for detecting dynamic event regions in wireless sensor network with the consideration on energy saving. Our model is that the sensing field is monitored by a large number of randomly distributed sensors with low-power battery and limited functionality, and that the event region is dynamic with motion or changing the shape. At any time that the event happens, we need some sensors awake to detect it and to wake up its k-hop neighbors to detect further events. Scheduling for the network to save the total power-cost or to maximize the monitoring time has been studied extensively. Our scheme is that some predetermined sensors, called critical sensors are awake all the time and when the event is detected by a critical sensor the sensor broadcasts to the neighbors to check their sensing area. Then the neighbors check their area and decide whether they wake up or remain in sleeping mode with certain criteria. Our algorithm uses only 2 bit of information in communication between sensors, thus the total communication cost is low, and the speed of detecting all event region is high. We adapt two kinds of measure for the wake-up decision. With suitable threshold values, our algorithm can be applied for many applications and for the trade-off between energy saving and the efficiency of event detection.

  • PDF

Prediction and Evaluation of Power Output for Energy Scavengers using the Piezoelectric Material (압전 재료를 이용한 에너지 변환 시스템의 출력 파워 예측 및 평가)

  • Oh, Jae-Eung;Kim, Seong-Hyeon;Sim, Hyoun-Jin;Lee, Jung-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.827-830
    • /
    • 2006
  • With recent advanced in portable electric devices, wireless sensor, MEMS and bio-Mechanics device, the new typed power supply, not conventional battery but self-powered energy source is needed. Particularly, the system that harvests from their environments are interests for use in self powered devices. For very low powered devices, environmental energy may be enough to use power source. In the generality of cases, these energy harvesting systems are used in the piezoelectric materials as mechanisms to convert mechanical vibration energy into electric energy. Through the piezoelectric materials, the ambient vibration energy could be used to prolong the power supply or in the ideal case provide endless energy f9r the devices. Therefore, the piezoelectric power harvesting cantilever beam is developed. Also, the output voltage and power are predicted in this study. We also discuss the developing system of the piezoelectric energy scavenger. An experimental verification of the model is also performed to ensure its accuracy.

  • PDF

Analysis of Certificateless Signcryption Schemes and Construction of a Secure and Efficient Pairing-free one based on ECC

  • Cao, Liling;Ge, Wancheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4527-4547
    • /
    • 2018
  • Signcryption is a cryptographic primitive that provides authentication (signing) and confidentiality (encrypting) simultaneously at a lower computational cost and communication overhead. With the proposition of certificateless public key cryptography (CLPKC), certificateless signcryption (CLSC) scheme has gradually become a research hotspot and attracted extensive attentions. However, many of previous CLSC schemes are constructed based on time-consuming pairing operation, which is impractical for mobile devices with limited computation ability and battery capacity. Although researchers have proposed pairing-free CLSC schemes to solve the issue of efficiency, many of them are in fact still insecure. Therefore, the challenging problem is to keep the balance between efficiency and security in CLSC schemes. In this paper, several existing CLSC schemes are cryptanalyzed and a new CLSC scheme without pairing based on elliptic curve cryptosystem (ECC) is presented. The proposed CLSC scheme is provably secure against indistinguishability under adaptive chosen-ciphertext attack (IND-CCA2) and existential unforgeability under adaptive chosen-message attack (EUF-CMA) resting on Gap Diffie-Hellman (GDH) assumption and discrete logarithm problem in the random oracle model. Furthermore, the proposed scheme resists the ephemeral secret leakage (ESL) attack, public key replacement (PKR) attack, malicious but passive KGC (MPK) attack, and presents efficient computational overhead compared with the existing related CLSC schemes.

Using Choice-Based Conjoint Analysis to Determine Smartphone Choice - a Student's Perspective

  • Baganzi, Ronald;Shin, Geon-Cheol;Wu, Shali
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.4
    • /
    • pp.93-115
    • /
    • 2017
  • The ability of smartphones to facilitate various services like mobile banking, e-commerce and mobile payments has made them part of consumers' lives. Conjoint analysis (CA) is a marketing research approach used to assess how consumers' preferences for products or services develop. The potential applications of CA are numerous in consumer electronics, banking and insurance services, job selection and workplace loyalty, consumer packaged goods, and travel and tourism. Choice-Based Conjoint (CBC) analysis is the most commonly used CA approach in marketing research. The purpose of this study is to utilise CBC analysis to investigate the relative importance of smartphone attributes that influence consumer smartphone preference. An experiment was designed using Sawtooth CBC Software. 326 students attempted the online survey. Utility values were derived by Hierarchical Bayes (HB) estimation and used to explain consumers' smartphone preferences. All the six attributes used for the study were found to significantly influence smartphone preference. Smartphone brand was the most important, followed by the price, camera, RAM, battery life, and storage. This study is one of the first to use Sawtooth CBC analysis to assess consumer smartphone preference based on the six attributes. We provide implications for the development of new smartphones based on attributes.