• 제목/요약/키워드: Battery energy storage

검색결과 755건 처리시간 0.029초

Fuzzy Logic을 이용한 마이크로그리드의 독립운전 제어 (Control of Islanded Microgrid Using Fuzzy Logic)

  • 이흥석;박준호;구본길;김종율
    • 전기학회논문지
    • /
    • 제63권6호
    • /
    • pp.727-737
    • /
    • 2014
  • This paper presents the design of Fuzzy PI controller that is used at BESS(Battery Energy Storage System) charging and discharging process for islanded operation in microgrid. Most of the PI controllers have fixed PI gains, but real-time updated gains are applied to PI controller using Fuzzy logic in this paper. The performances of suggested Fuzzy PI controller are simulated by PSCAD/EMTDC. As a result, output characteristics of ESS applied real-time updated gains to PI controller are faster than those of using fixed gains.

BESS 모델링 및 전기철도 급전계통에의 전압보상 적용 (BESS Modeling and Application to Voltage Compensation of Electric Railway System)

  • 유형준;손호익;김학만
    • 전기학회논문지
    • /
    • 제62권3호
    • /
    • pp.417-423
    • /
    • 2013
  • The load of electric railroad can generate voltage fluctuation in the electric railway system because of high speed of the electric railroad and frequent movement and stop. This voltage fluctuation of electric railway system can cause not only voltage imbalance but also harmonic in the utility grid. Therefore the electric railroad system is in need of the reactive power compensation, such as static synchronous compensator (STATCOM) and static var compensator (SVC). Especially, the battery energy storage system (BESS) can control the real and reactive power at the same time. In this paper, the electric railway system using BESS has been modeled to show its voltage compensation effect using Matlab/Simulink.

계통 연계형 태양광 발전 시스템의 스마트 블랙박스의 개발 (A Development of Smart Black Box for Grid-connected Solar Power System)

  • 박성원;김동완;이진우
    • 전기학회논문지
    • /
    • 제65권12호
    • /
    • pp.2119-2126
    • /
    • 2016
  • In this paper, we developed a smart black box that can monitor and record the information of the sensor from subsystem in the smart grid system. The plant is the complex power system which is integrated by solar power system, grid-connected power systems, and BESS(battery energy storage system). The black box with the web-server application can connect and synchronize to an external monitoring system and a smart phone. We hope that this system is to contribute to improve operational efficiency, reliability, and stability for the smart grid power system.

전지전력저장시스템의 국내적용을 위한 경계성 검토에 관한 연구 (Economic Evaluation for the Domestic Application of the Battery Energy Storage System(BESS))

  • 김응상;김호용;김재철;임성정
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.610-612
    • /
    • 1995
  • This paper presents the economic evaluation of battery energy storage system(BESS). Application target of the BESS was decided to both the distribution substation and single customer. 1MW/4MWh BESS under research and development in KERI was used for example. We analyzed and compared BESS with conventional combind cycle. The result shows that BESS is more economic than conventional combind cycle.

  • PDF

이종 배터리를 이용한 HBESS 설계 및 퍼지 논리 기반의 제어 알고리즘 (Design of Hybrid Energy Storage System Using Dual Battery and Control Algorithm Based on Fuzzy Logic)

  • 노태원;안정훈;이병국
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.58-59
    • /
    • 2017
  • 본 논문은 고에너지 밀도와 고출력 특성의 이종 배터리를 이용한 HBESS (Hybrid Battery Energy Storage System) 설계방안과 퍼지 로직 기반의 제어 알고리즘을 개발한다. 시스템의 전력 수요 특성을 고려하여 이종 배터리의 최적 용량을 산정하고 HBESS의 구성 방안을 제안한다. 내부 상태에 따라 변화하는 배터리 특성을 효과적으로 반영하기 위하여 퍼지 논리 기반의 시스템 제어 알고리즘을 도입한다. 본 연구의 타당성은 실제 전력 수요 프로파일 기반의 시뮬레이션을 통하여 검증한다.

  • PDF

Fuzzy Logic Based Energy Management For Wind Turbine, Photo Voltaic And Diesel Hybrid System

  • Talha, Muhammad;Asghar, Furqan;Kim, Sung Ho
    • 한국지능시스템학회논문지
    • /
    • 제26권5호
    • /
    • pp.351-360
    • /
    • 2016
  • Rapid population growth with high living standards and high electronics use for personal comfort has raised the electricity demand exponentially. To fulfill this elevated demand, conventional energy sources are shifting towards low production cost and long term usable alternative energy sources. Hybrid renewable energy systems (HRES) are becoming popular as stand-alone power systems for providing electricity in remote areas due to advancement in renewable energy technologies and subsequent rise in prices of petroleum products. Wind and solar power are considered feasible replacement to fossil fuels as the prediction of the fuel shortage in the near future, forced all operators involved in energy production to explore this new and clean source of power. Presented paper proposes fuzzy logic based Energy Management System (EMS) for Wind Turbine (WT), Photo Voltaic (PV) and Diesel Generator (DG) hybrid micro-grid configuration. Battery backup system is introduced for worst environmental conditions or high load demands. Dump load along with dump load controller is implemented for over voltage and over speed protection. Fuzzy logic based supervisory control system performs the power flow control between different scenarios such as battery charging, battery backup, dump load activation and DG backup in most intellectual way.

Development of Super-capacitor Battery Charger System based on Photovoltaic Module for Agricultural Electric Carriers

  • Kang, Eonuck;Pratama, Pandu Sandi;Byun, Jaeyoung;Supeno, Destiani;Chung, Sungwon;Choi, Wonsik
    • Journal of Biosystems Engineering
    • /
    • 제43권2호
    • /
    • pp.94-102
    • /
    • 2018
  • Purpose: In this study, a maintenance free super-capacitor battery charging system based on the photovoltaic module, to be used in agricultural electric carriers, was developed and its charging characteristics were studied in detail. Methods: At first, the electric carrier system configuration is introduced and the electric control components are presented. The super-capacitor batteries and photovoltaic module used in the experiment are specified. Next, the developed charging system consisting of a constant current / constant voltage Buck converter as the charging device and a super-capacitor cell as a balancing device are initiated. The proposed circuit design, a developed PCB layout of each device and a proportional control to check the current and voltage during the charging process are outlined. An experiment was carried out using a developed prototype to clarify the effectiveness of the proposed system. A power analyzer was used to measure the current and voltage during charging to evaluate the efficiency of the energy storage device. Finally, the conclusions of this research are presented. Results: The experimental results show that the proposed system successfully controls the charging current and balances the battery voltage. The maximum voltage of the super-capacitor battery obtained by using the proposed battery charger is 16.2 V, and the maximum charging current is 20 A. It was found that the charging time was less than an hour through the duty ratio of 95% or more. Conclusions: The developed battery charging system was successfully implemented on the agricultural electric carriers.

Power Quality Control of Hybrid Wind Power Systems using Robust Tracking Controller

  • Ko, Heesang;Yang, Su-Hyung;Lee, Young Il;Boo, Chang-Jin;Lee, Kwang Y.;Kim, Ho-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.688-698
    • /
    • 2015
  • This paper presents a modeling and a controller design for a hybrid wind turbine generator, especially with an operating mode of battery energy-storage system and a dumpload that contribute to the frequency control of the system while diesel-synchronous unit is not in operation. The proposed control scheme is based on a robust tracking controller, which takes an account of system uncertainties due to the wind flow and load variations. In order to provide robustness for system uncertainties, the range of operation is partitioned into three operating conditions as sub-models in the controller design. In the simulation study, the proposed robust tracking controller (RTC) is compared with the conventional proportional-integral (PI) controller. Simulation results show that the effectiveness of the RTC against disturbances caused by wind speed and load variation. Thus, better quality of the hybrid wind power system is achieved.

제주지역 풍력발전단지의 BESS 적용효과 분석 (Analyzing effects of the BESS for wind farm in Jeju Island)

  • 이도헌;김일환;김호민;김승현
    • 한국태양에너지학회 논문집
    • /
    • 제34권4호
    • /
    • pp.67-74
    • /
    • 2014
  • The fluctuation of the output power of wind farms will be able to cause the impact on the Jeju power system such as power quality and stability. To settle the matter, many researchers have proposed the use of the BESS(Battery Energy Storage System) in the wind farm. In this paper, The BESS is applied to each wind farms for mitigating the fluctuation of wind power output. The BESS is controlled for smoothing the output of wind farms. Two kinds of simulation will be carried out. First, the simulation results by using PSCAD/EMTDC simulation program are compared to the measured data from the real power grid in Jeju Island. The other is to analyze the output of wind farms when the BESS is applied to the simulation works. The simulation results will demonstrate the effectiveness of using BESS to stabilize for power grid in Jeju Island.

산업용 수용가의 에너지저장장치 적용 (Application of Energy Storage System for Industrial Customer)

  • 홍종석;채희석;강병욱;김태형;김재철
    • 전기학회논문지
    • /
    • 제64권7호
    • /
    • pp.992-998
    • /
    • 2015
  • The ESS is composed of Battery Package, PCS(Power Conditioning System) Package, BCU(BESS Control Unit). In Jeju smart grid test-bed, we have developed a business model by ESS power system, renewable energy, transportation, such as customers, and have demonstrated above things. We have analyzed the EMS(Energy Management System) model of KPX where manages supply and demand of domestic electrical power system. We modified and launched EMS for microgrid but the cost was expensive and the system was large size. For releasing this system from industry as a whole, it is imperative to develop PMS(Power Management System) for microgrid. However, the cost of EMS for microgrid is expensive, some systems because it is a large development of the all of the first fruits in urgent PMS(Power Management System) for microgrid to be used in industry in general. Therefore, in this paper, we propose the ESS model considering the power systems characteristics and extensibility in korea. and also we propose the PMS to manage the ESS systems.