• Title/Summary/Keyword: Battery energy storage

Search Result 763, Processing Time 0.024 seconds

Quasi-static Characteristics in Radial Direction of 100 kWh Class Superconductor Bearing (100 kWh급 초전도 베어링의 지름방향 준정적 특성)

  • Jung, S.Y.;Park, B.J.;Han, Y.H.;Park, B.C.;Lee, J.P.;Han, S.C.
    • Progress in Superconductivity
    • /
    • v.12 no.1
    • /
    • pp.27-31
    • /
    • 2010
  • A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. Many aspects of the quasi-static behavior of flywheel rotors still need to be studied closely, and the rotors require a stable and highly efficient supporting system such as high temperature superconductor (HTS) bearings, which offer dynamic stability without the use of active control. Quasi-static properties of HTS bearings in the radial direction provide data to solve problems which may occur in a running system. Since stiffness in countering rotor vibration is the main parameter for designing an HTS bearing system, we investigated the quasi-static properties of the magnetic force between permanent magnets(PMs) and HTS bulks in the radial direction. We measured radial stiffness, and discovered that bearing stiffness varied greatly depending on the number of active HTS bulks. This is valuable data for predicting the change in stiffness during partial HTS bearing failure. The quasi-static test results are used for optimal design and performance prediction for the 100 kWh class superconductor bearing.

Estimation of Reasonable Price of Battery Energy Storage System for Electricity Customers Demand Management (전력소비자 수요관리용 전지전력저장시스템의 적정 가격 산정)

  • Kim, Seul-Ki;Cho, Kyeong-Hee;Kim, Jong-Yul;Kim, Eung-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1390-1396
    • /
    • 2013
  • The paper estimated the reasonable market price of lead-acid battery energy storage system (BESS) intended for demand management of electricity customers. As time-of-use (TOU) tariffs have extended to a larger number of customers and gaps in the peak and off-peak rates have gradually risen, deployment of BESS has been highly needed. However, immature engineering techniques, lack of field experiences and high initial investment cost have been barriers to opening up ESS markets. This paper assessed electricity cost that BESS operation could save for customers and, based on the possible cost savings, estimated reasonable prices at which BESSs could become a more prospective option for demand management of customers. Battery scheduling was optimized to maximize the electricity cost savings that BESS would possibly achieve under TOU tariffs conditions. Basic economic factors such as payback period and return on investment were calculated to determine reasonable market prices. Actual load data of 12 industrial customers were used for case studies.

Control and Operating Modes of Battery Energy Storage System for a Stand-Alone Microgrid with Diesel Generator (디젤발전기가 포함된 독립형 마이크로그리드에서의 BESS 제어기법 및 운전모드 연구)

  • Jo, Jongmin;An, Hyunsung;Kim, Jichan;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.2
    • /
    • pp.86-93
    • /
    • 2018
  • In this work, control methods and operating modes are proposed to manage standalone microgrid. A standalone microgrid generally consists of two sources, namely, battery energy storage system (BESS) and diesel generator (DG). BESS is the main source that supplies active and reactive power regardless of load conditions, whereas DG functions as an auxiliary power source. BESS operates in a constant voltage constant frequency (CVCF) control, which includes proportional-integral + resonant controller in a parallel structure. In CVCF control, the concept of fundamental positive and negative transformation is utilized to generate a three-phase sinusoidal voltage under imbalanced load condition. Operation modes of a standalone microgrid are divided into three modes, namely, normal, charge, and manual modes. To verify the standalone microgrid along with the proposed control methods, a demonstration site is constructed, which contains 115 kWh lead-acid battery bank, 50 kVA three-phase DC - AC inverter, and 50 kVA DG and controllable loads. In the CVCF control, the total harmonic distortion of output voltage is improved to 1.1% under imbalanced load. This work verifies that the standalone microgrid provides high-quality voltage, and three operation modes are performed from the experimental results.

Hybridization of the Energy Generator and Storage Device for Self-Powered Electronics (자가구동형 전자소자 구현을 위한 에너지 발전/저장 소자 융합 기술 동향)

  • Lee, Ju-Hyuck
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.4
    • /
    • pp.68-79
    • /
    • 2018
  • Currently, hybridization of energy generator and storage devices is considered to be one of the most important energy-related technologies due to the possibility of replacing batteries or extending the lifetime of a batteries in accordance with increasing battery demand. This review aims to describe current progress on the mechanical energy generator and hybridization of energy generator and energy storage devices for self-powered electronics. First, the research trends related to energy generation devices using piezoelectric and triboelectric effect that convert physical energy into electric energy is introduced. In addition, integration of energy generators and energy storage devices is introduced. In particular, self-charging energy cells provide an innovative approach to the direct conversion of mechanical energy into electrochemical energy to decrease energy conversion loss.

Surface Morphology Changes of Lithium/Sulfur Battery using Multi-walled carbon nanotube added Sulfur Electrode during Cyclings (탄소나노튜브가 첨가된 유황전극을 사용한 리튬/유황 전지의 사이클링에 의한 표면형상변화)

  • Park, Jin-Woo;Yu, Ji-Hyun;Kim, Ki-Won;Ryu, Ho-Suk;Ahn, Jou-Hyeon;Jin, Chang-Soo;Shin, Kyung-Hee;Kim, Young-Chul;Ahn, Hyo-Jun
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.174-179
    • /
    • 2011
  • We investigated the surface morphology changes of a lithium/sulfur battery using multi-walled canbon nanotube added sulfur electrode during charge-discharge cycling. The Li/S cell showed the first discharge capacity of 1286 mAh/g-S, which utilized is 71% of the theoretical value. It decreased to 328 mAh/g-S at the 100th cycle, which corresponds to about 19% utilization of the total sulfur in the cathode. The spherical lumps of the reaction product were observed on the surface of the sulfur electrode. This material was verified as lithium sulfide by X-ray diffraction measurement. The pores in the separator were filled with reaction product. Thus the diffusion of the $Li^+$ ion decreased, which resulted in the decreased capacity of the Li/S cell.

Kt Factor Analysis of Lead-Acid Battery for Nuclear Power Plant

  • Kim, Daesik;Cha, Hanju
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.460-465
    • /
    • 2013
  • Electrical equipments of nuclear power plant are divided into class 1E and non-class 1E. Electrical equipment and systems that are essential to emergency reactor shutdown, containment isolation, reactor core cooling, and containment and reactor heat removal, are classified as class 1E. batteries of nuclear power plant are divided into four channels, which are physically and electrically separate and independent. The battery bank of class 1E DC power system of the nuclear power plant use lead-acid batteries in present. The lead acid battery, which has a high energy density, is the most popular form of energy storage. Kt factor of lead-acid battery is used to determine battery size and it is one of calculatiing coefficient for capacity. this paper analyzes Kt factor of lead-acid battery for the DC power system of nuclear power plant. In addition, correlation between Kt parameter and peukert's exponent of lead-acid battery for nuclear plant are discussed. The analytical results contribute to optimize of determining size Lead-acid battery bank.

A Study on Analysis Model for Economic Evaluation of Battery Energy Storage System (전지전력저장시스템의 경제성 평가를 위한 분석모델의 연구)

  • Kim, Eung-Sang;Kim, Ho-Young;Ko, Yo;Rim, Seong-Jeong;Kim, Jae-Chul
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.5
    • /
    • pp.75-82
    • /
    • 1996
  • The Battery Energy Storage System(BESS) can help the load factor improved by discharging the battery energy when the load is peak in the daytime. BESS has the advantages such as spinning reserve, control of voltage and frequency, deferment of investment for generation and transmission capacity construction, and reliability improvement of utility power service. To develop BESS and to apply it to Korea's power system, economic evaluation must be preceded. In this paper, we analyzed the investment costs, by modifying and complementing the Sysplan Model, through the economic assessment.

  • PDF

Simulation Analysis and Development of Matlab/Simulink Model for Stand-alone Operation of Emergency Diesel Synchronous Generator-based Hybrid Energy System (비상용 디젤동기발전시스템기반 독립운전 하이브리드에너지시스템 모델 설정 및 시뮬레이션 분석에 관한 연구)

  • Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.1
    • /
    • pp.70-79
    • /
    • 2015
  • In this paper, enhanced stand-alone operation and development of Matlab/Simulink model of emergency diesel based hybrid energy system is presented. Simulations based on the remote community or islands were performed for PV-diesel-battery hybrid system. Modeling of PV-diesel-battery integrated system is done to perform under the solar radiation and load conditions on Matlab/Simulink platform. The models of diesel generator unit, battery energy storage system, PV and frequency-power control are developed and simulation studies have been carried out under various conditions using Matlab/Simulink and SimPowerSystem. It is demonstrated that the proposed system can provide reliable and good quality power to the customers in diesel synchronous generator-based hybrid energy systems.

Surface Treatment with Alkali Solution of Carbon Felt for Vanadium Redox Flow Battery (바나듐레독스흐름전지용 카본펠트전극의 알칼리용액을 이용한 표면개질)

  • KIM, SUNHOE;LEE, KEON JOO
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.4
    • /
    • pp.372-377
    • /
    • 2016
  • The carbon felt used as the electrode of vanadium redox flow battery (VRFB) requires imprived electrochemical activity for better battery performance and efficiencies. Many efforts have been tried to improve electrochemical activity of the carbon felt as electrodes. In this study the alkali solution, KOH, is applied on surface treatment of the carbon felt electrode. The carbon felts were treated with KOH under room temperature and $80^{\circ}C$. The isopropyl alcohol was applied to improve wettability of the carbon felt during KOH treatment. The KOH treated carbon felt was analyzed by using the X-ray photoelectron spectroscopy (XPS). The XPS analysis of carbon felt electrode revealed on increase in the overall surface oxygen content of the carbon felts after KOH treatment. Also, cyclic voltametry tests showed electrochemical characteristics enhancement of the carbon felt.

Fabrication of petroleum pitch/polymer composite binder for anode material in lithium-ion battery (리튬이온 배터리용 음극 합금/폴리머 복합체 바인더 패브릭)

  • Hyeon Taek Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.1191-1200
    • /
    • 2023
  • The lithium ion battery has applied to various fields of energy storage systems such as electric vehicle and potable electronic devices in terms of high energy density and long-life cycle. Despite of various research on the electrode and electrolyte materials, there is a lack of research for investigating of the binding materials to replace polymer based binder. In this study, we have investigated petroleum pitch/polymer composite with various ratios between petroleum pitch and polymer in order to optimize the electrochemical and physical performance of the lithium-ion battery based on petroleum pitch/polymer composite binder. The electrochemical and physical performances of the petroleum pitch/polymer composite binder based lithium-ion battery were evaluated by using a charge/discharge test, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and universal testing machine (UTM). As a result, the petroleum pitch(MP-50)/polymer(PVDF) composite (5:5 wt % ratio) binder based lithium-ion battery showed 1.29 gf mm-1 of adhesion strength with 144 mAh g-1 of specific dis-charge capacity and 93.1 % of initial coulombic efficiency(ICE) value.