• Title/Summary/Keyword: Battery System

Search Result 2,372, Processing Time 0.035 seconds

Railway System Standby Power Nickel Metal Hydride Battery (철도시스템비상전원용 니켈수소(NiMH)전지)

  • Kim, Sung-Yong;Park, Dong-Pil
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.873-877
    • /
    • 2009
  • In order to use railway system standby power, produced 160Ah NiMH battery that would be able to substitute the lead acid battery or NiCd battery form which contain the toxic material in environment, using parallel connected 80Ah NiMH battery. And in order to develop proper electrode in the 160Ah NiMH battery, tested high rate discharge performance of the ternary electrolyte. 160Ah NiMH battery evaluated the various test in order to use railway system standby power.

The Simulation of Single Phase Multi-Level Converter which can control the SOC of Lithium-Ion Battery Units (리튬이온 배터리의 SOC 제어가 가능한 단상 멀티레벨 컨버터 시뮬레이션)

  • Kim, Jae-Hong;Kim, Eel-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.122-128
    • /
    • 2011
  • This paper proposes a new control scheme of lithium ion battery units based on single phase multi-level converter. In the DC/AC converter applications using battery storage system, it is necessary to control the balancing voltage of individual battery units for high efficiency utilization. Using the proposed control scheme, the DC/AC single phase converter system is applied. To verify the effectiveness of the proposed control scheme, computer simulation is accomplished. In the computer simulation, lithium-ion battery units and single phase multi-level converter system are modeled and carried out using Psim simulation program. It will be helpful for design and applications of energy storage system with lithium-ion battery.

Towards a reduced order model of battery systems: Approximation of the cooling plate

  • Szardenings, Anna;Hoefer, Nathalie;Fassbender, Heike
    • Coupled systems mechanics
    • /
    • v.11 no.1
    • /
    • pp.43-54
    • /
    • 2022
  • In order to analyse the thermal performance of battery systems in electric vehicles complex simulation models with high computational cost are necessary. Using reduced order methods, real-time applicable model can be developed and used for on-board monitoring. In this work a data driven model of the cooling plate as part of the battery system is built and derived from a computational fluid dynamics (CFD) model. The aim of this paper is to create a meta model of the cooling plate that estimates the temperature at the boundary for different heat flow rates, mass flows and inlet temperatures of the cooling fluid. In order to do so, the cooling plate is simulated in a CFD software (ANSYS Fluent ®). A data driven model is built using the design of experiment (DOE) and various approximation methods in Optimus ®. The model can later be combined with a reduced model of the thermal battery system. The assumption and simplification introduced in this paper enable an accurate representation of the cooling plate with a real-time applicable model.

Study on the Controller Design Method for Battery Energy Storage System using Linearized Battery Model (선형 배터리 모델을 이용한 에너지 저장장치의 제어기 설계기법에 관한 연구)

  • Kim, Il-Song
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.530-537
    • /
    • 2014
  • A controller design method for a battery-energy storage system using a linearized battery model is presented in this paper. The suggested linear battery model is expressed with open-circuit voltage having three relaxation filters and a linear output equation. A method to obtain on-line resistance and maximum available power is also presented. The battery state of charge information is obtained by Kalman filter, and its performance is verified by FTP75 driving cycles. The controller for power converter is designed and experimented with a 250 V battery pack. The proposed control method is simple and easy to apply to a real system.

A Development of 2MVA Battery Energy Storage System (2MVA급 배터리 에너지 저장시스템 개발)

  • Kim, Soo-Hong;Kim, Tae-Hyeong;Kim, Yun-Hyun;In, Dong-Seok;Kwon, Byung-Ki;Choi, Chang-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.174-181
    • /
    • 2012
  • Energy storage system connected to the grid has two functions such as the surplus power of a grid is stored in batteries or the energy stored in batteries will supply to the grid when the grid needs. The battery energy storage system consist of power condition system (PCS) for power supply and battery conditioning system (BCS). Lithium-ion batteries are mainly used. In this paper, the battery energy storage system connected to the grid described. The configuration of the 2MVA class power control system using water cooling and battery system are presented. And control method for the system and the output filter design method are proposed. Experimental verification of the proposed system is provided with 2MVA PCS and 500kWh BCS.

A Study on the Electrical Characteristics of Battery Capacitor Applied to Photovoltaic Power System (태양광 시스템에 적용한 배터리 커패시터의 전기적 특성에 관한 연구)

  • Mang, Ju-Cheul;Yoon, Jung-Rag
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1740-1744
    • /
    • 2017
  • This paper describes the preparation and characteristics of a battery capacitor and module for solar power system. A cylindrical 30,000F battery capacitor ($60{\times}138mm$) was assembled by using the $LTO(Li_4Ti_5O_{12})$ electrode as an anode and $NMC(LiNiMnCoO_2)-LCO(LiCoO_2)$ as a cathode. The battery capacitor has reduced energy density and power density under high CC(constant current) and CP(constant power) conditions. Battery capacitor module (16V, 11Ah) was fabricated using an asymmetric hybrid capacitor with a capacitance of 30,000F. In order to determine the characteristics of the battery capacitor Module for solar power system, battery capacitor cells were connected in series with active balancing circuit. As a result of measuring the 100w LED lamp, it was discharged at the voltage of 15V~10V, and the compensation time at discharge was measured to be about 4979s. Experimental results show that it can be applied to applications related to solar power system by applying battery capacitor module.

The SOC Management Strategy of Battery System for Propulsion in Wireless Low Floor System (무가선 저상트램 추진배터리 시스템의 SOC관리 전략)

  • Oh, Yong-Kuk;Kwak, Jae-Ho;Lee, Ho-Yong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2329-2335
    • /
    • 2011
  • The Wireless low floor tram uses the energy more effectively than other systems with onboard battery system. But for this the SOC(state of charge) management of the battery system is required. This paper is focused on the SOC management strategy of battery system for propulsion in wireless low floor tram. For minimizing consumption energy, the SOC management strategy that maximizes the regeneration energy is studied. The SOC operating region is divided to overcome the limited life cycle pointed out as a disadvantage of battery system. And the effective energy management strategy of tram is suggested through the charge/discharge of the battery system according to tram status in catenary/catenary-free section.

  • PDF

20 KW Battery Storage System Design (20KW 전력저장 전지시스템 설계)

  • Ko, Y.;Kim, H.Y.;Nam, K.Y.;Kim, J.E.;Cho, K.Y.;Eom, Y.C.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.254-257
    • /
    • 1989
  • Battery Energy Storage System has been studied and adopted actively by foreign advanced utilities, in order to utilize off peak energy. The outline of 20KW Battery Storage System design of the project - the study on the development of Battery Electric Energy Storage System, carried out by KERI KEPCO, is presented. The first target of this project is the conceptual design of MW-class Battery Storage System and 20KW Battery Storage System is its the small scale system.

  • PDF

Space Qualification of Small Satellite Li-ion Battery System for the Secured Reliability (소형인공위성용 리튬이온 배터리시스템의 신뢰성 확보을 위한 우주인증시험)

  • Park, Kyung-Hwa;Yi, Kang-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.351-359
    • /
    • 2014
  • This paper introduces the lithium ion battery system for LEO(Low Earth Orbit) small satellites. This study proves the reliability of lithium ion batteries applying to the space application. The specifications for lithium ion battery unit are proposed to supply power to the satellite and the overall mechanical design including structural simulation to confirm the reliability of the lithium ion BMS(Battery Management System) under the space environment and launching conditions. The results of structural simulation, functional tests, and space environmental tests show the lithium ion battery system is space qualified. Space qualification of the small satellite battery system to secure reliability of BMS and lithium ion batteries lend credibility for using lithium ion batteries in space application.

Development of Independent 1 kW-class PEMFC-Battery Hybrid System for a Building (건물용 독립형 1kW급 PEMFC-배터리 하이브리드 시스템 기술 개발)

  • Yang, Seug Ran;Kim, Jung Suk;Choi, Mi Hwa
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.113-120
    • /
    • 2019
  • We have developed 1 kW-class PEMFC-battery hybrid system independently powering to the building, through the process of system design, current load characteristics analysis, power system configuration for demonstration site and performance evaluation. In order to use the fuel cell and battery as the hybrid type, a control technology for the charging/discharging decision and charging speed of the battery is required rather than using fuel cell. Also output power distribution between PEMFC and the battery is a core of energy management technology. It is confirmed that it is possible to supply independently 1kW powering the building to ensure optimal energy management through the power control experiment of the hybrid system.