• 제목/요약/키워드: Battery System

Search Result 2,362, Processing Time 0.032 seconds

Computational Design of Battery System for Automotive Applications (전기자동차 배터리 시스템 개발을 위한 전산설계기술)

  • Jung, Seunghun
    • Journal of Institute of Convergence Technology
    • /
    • v.10 no.1
    • /
    • pp.37-40
    • /
    • 2020
  • Automotive battery system consists of various components such as battery cells, mechanical structures, cooling system, and control system. Recently, various computational technologies are required to develop an automotive battery system. Physics-based cell modeling is used for designing a new battery cell by conducting optimization of material selection and composition in electrodes. Structural analysis plays an important role in designing a protective system of battery system from mechanical shock and vibration. Thermal modeling is used in development of thermal management system to maintain the temperature of battery cells in safe range. Finally, vehicle simulation is conducted to validate the performance of electric vehicle with the developed battery system.

Design and development of less than 1Kw Lithium rechargeable battery pack

  • Kim, Sang-Bum;Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.104-108
    • /
    • 2018
  • Lithium-ion batteries have been used in energy storage systems (ESS), electric vehicles (EVs), etc. due to their high safety, fast charging and long lifecycle. This paper aims to improve the convenience of users by changing the wired battery stack used in the battery pack, wirelessly using RFID, reducing the internal volume of the battery pack, reducing the size of the battery pack. In this paper, we propose a battery management system which can provide the flexibility of battery pack expansion and maintenance by using lithium ion battery, battery management system (BMS) and wireless communication for light weight of 1Kw small battery pack. Also, by flexibly arranging the cell layout inside the battery pack and designing to reduce the size of the outer shape of the battery pack.

A Study on Optimal Operation Strategy for Mild Hybrid Electric Vehicle Based on Hybrid Energy Storage System

  • Bae, SunHo;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.631-636
    • /
    • 2018
  • This paper proposed an optimal operation strategy for a hybrid energy storage system (HESS) with a lithium-ion battery and lead-acid battery for mild hybrid electric vehicles (mild HEVs). The proposed mild HEV system is targeted to mount the electric motor and the battery to a conventional internal combustion engine vehicle. Because the proposed mild HEV includes the motor and energy storage device of small capacity, the system focuses on low system cost and small size. To overcome these limitations, it is necessary to use a lead acid battery which is used for a vehicle. Thus, it is possible to use more energy using HESS with a lithium battery and a lead storage battery. The HESS, which combines the lithium-ion battery and the secondary battery in parallel, can achieve better performance by using the two types of energy storage systems with different characteristics. However, the system requires an operation strategy because accurate and selective control of the batteries for each situation is necessary. In this paper, an optimal operation strategy is proposed considering characteristics of each energy storage system, state-of-charge (SOC), bidirectional converters, the desired output power, and driving conditions in the mild HEV system. The performance of the proposed system is evaluated through several case studies with respect to energy capacity, SOC, battery characteristic, and system efficiency.

Experimental Study on Bi-directional Air Cooling System for 18650 Li-ion Battery Module to Minimize Cell-to-Cell Temperature Variation (18650 Li-ion battery Module의 Cell-to-Cell 온도 편차 최소화를 위한 양방향 냉각에 대한 실험적 연구)

  • JANG, HOSUN;PARK, MINGYU;JEON, JIWHAN;PARK, SEONGSU;KIM, TAEWOO;PARK, SUNGJIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.407-418
    • /
    • 2017
  • Battery heat management is essential for high power and high energy battery system because it affects its performance, longevity, and safety. In this paper, we investigated the temperature of the 18650 Lithium Ion Battery Module used in a Energy Storage System (ESS) and the cooling method to minimize cell-to-cell temperature variation of battery module. For uniform temperature distribution within a battery module, the flow direction of the coolant in a battery module has been changed according to the time interval, and studied the effect of the cooling method on the temperature uniformity in a battery module which includes a number of battery cells. The experimental results show that bi-directional battery cooling method can effectively reduce the cell-to-cell temperature variation compared with the one-directional battery cooling. Furthermore, it is also found that bi-directional battery cooling can reduce the maximum temperature in a battery module.

Virtual Environment Modeling for Battery Management System

  • Piao, Chang-Hao;Yu, Qi-Fan;Duan, Chong-Xi;Su, Ling;Zhang, Yan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1729-1738
    • /
    • 2014
  • The offline verification of state of charge estimation, power estimation, fault diagnosis and emergency control of battery management system (BMS) is one of the key technologies in the field of electric vehicle battery system. It is difficult to test and verify the battery management system software in the early stage, especially for algorithms such as system state estimation, emergency control and so on. This article carried out the virtual environment modeling for verification of battery management system. According to the input/output parameters of battery management system, virtual environment is determined to run the battery management system. With the integration of the developed BMS model and the external model, the virtual environment model has been established for battery management system in the vehicle's working environment. Through the virtual environment model, the effectiveness of software algorithm of BMS was verified, such as battery state parameters estimation, power estimation, fault diagnosis, charge and discharge management, etc.

Bidirectional Power Transmission Fuel Cell System for Notebook Battery (노트북 배터리용 양방향 전력전송 연료전지 시스템)

  • JOUNG, GYUBUM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.3
    • /
    • pp.273-278
    • /
    • 2017
  • In this paper, a fuel cell battery charger system, which is capable of bi-directional power transmission without built in battery, has been designed and fabricated. Performance and states of the notebook battery in bi-directional power transmission using the manufactured system have been tested. Before initializing the fuel cell charging system for 1 minute, the system received 10 W of electric power from notebook battery. Then the fuel cell charging system has been normal charging to notebook battery by 50 W. As a result of the experiment, the state of the notebook battery discharged less than 5% at the initial charging time, but then it has been charged. This results proves bi-directional power transmission in notebook computers increase the availability of fuel cell chargers.

A Study of Comparing and Analyzing Electric Vehicle Battery Charging System and Replaceable Battery System by Considering Economic Analysis (경제성을 고려한 전기자동차 충전시스템과 배터리 교체형 시스템의 비교분석 연구)

  • Kim, Si-Yeon;Hwang, Jae-Dong;Lim, Jong-Hun;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1242-1248
    • /
    • 2012
  • Electric vehicle usage is currently very low, but it will be increase with development of electric vehicle technology and a good government policy. Moreover in 2020, advanced electric vehicle manufacturing system will give high performance for its price and mass production. Electric vehicle will become widespread in Korea. From an operational and a planned viewpoint, the electric power demand should be considered in relation to diffusion of electric vehicles. This paper presents the impact of the various battery charge systems. A comparison is performed for electric vehicle charging methods such as, normal charging, fast charging, and battery swapping. In addition, economic evaluation for the replaceable battery system and the quick battery charging system is performed through basic information about charging Infrastructure installation cost. The results of the evaluation show that replaceable battery system is more economical and reliable in side of electric power demand than quick battery charging system.

A Study on the Cooling Performance Improvement of Pouch Battery Thermal Management System for Electric Vehicles (전기자동차 파우치형 배터리 열관리 시스템의 냉각성능 향상에 대한 연구)

  • Shin, Jeong-Hoon;Lee, Jun-Kyoung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.715-724
    • /
    • 2022
  • In many electric vehicles, large-capacity pouch-type lithium-ion battery packs are mainly used to increase the mileage on a single charge. The lithium ion battery should be operated within the temperature range of 25℃ to 40℃ because the battery performance can be rapidly deteriorated due to an increase in internal temperature. Battery thermal management system (BTMS) can give the suitable temperature conditions to battery by water cooling method. In this research, the heat transfer characteristics (the battery temperature distributions and the water flow characteristics) were analyzed by CFD method to investigate the thermal performance of the cooling plate with 4-pass water flow structure. Moreover, the effect of the presence of fins between the battery cell was identified. The fins made smooth temperature distributions between the battery cells due to the heat spreading and lower the average battery cells temperature.

Development of Simulator for Hierarchical Battery Management System (계층적 배터리 관리 시스템 시뮬레이션 기술 개발)

  • Kang, Hyunwoo;Ahn, SungHo;Kim, Dongkyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.4
    • /
    • pp.213-218
    • /
    • 2013
  • In this research, we report on the development of simulation system for performance verification of BMS(Battery Management System) which is utilized in electric vehicles. In the industrial circles, a manufacturer of BMS typically tests their system with real battery packs. However, it takes a long time to test all functions of BMS. Here, we develop BMU(Battery Managament Unit) as an embedded board, which will be installed in electric vehicle for controlling battery packs. All other environment factors for testing BMU are developed in softwares in order to reduce the term of test. Especially, the proposed system consists of cell simulator and CMU(Cell Management Unit) simulator which simulate real battery cells and control battery cells. These simulators enable the BMU to test more battery cells. In addition, proposed system provides diagnosis program in order to diagnose and monitor the condition of BMS which makes the test of BMS more easily. In order to verify the performance of the developed simulator, we have performed the experiment with real battery packs and our simulator. Through comparing two results of experiments, we verify that developed simulator shows better performance in terms of less amount of testing duration though having high reliability.

Design of Controllers for Battery Energy Storage System (2차전지 전력저장시스템의 제어기 설계)

  • 한석우;전윤석;최규하;목형수
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.431-434
    • /
    • 1999
  • This paper presents design of controllers for battery energy storage system. The proposed battery energy storage system can be controlled to operate in the power conditioning mode or the inverter mode. The operation of this mode further divided into three cases: (a) in the peak load period, the load power supplied from the utility is minimized as far as possible; (b) in the off-peak load period, the utility supplies power to the load and charges the battery bank with automatic charging control; (c) in the medium load period, to save battery energy the real power flow out of the battery energy storage system is minimized. Besides, in all cases, the proposed battery energy storage system also automatically compensates the harmonics, subharmonics and reactive power factor in the utility side are much improved. Simulation results are presented by the effectiveness of the proposed controllers for battery energy storge system.

  • PDF