• Title/Summary/Keyword: Battery R&D

Search Result 232, Processing Time 0.025 seconds

Electrochemical Reaction Mechanism with Variation of Pyrite (FeS2) Particle Size for Thermal Battery (열전지용 황철석(FeS2) 입자크기 변화에 따른 전기화학반응 메커니즘)

  • Park, Byeong June
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.4
    • /
    • pp.246-252
    • /
    • 2017
  • Pulverized $FeS_2$ (pyrite) gives different discharge test results with as-received $FeS_2$ electrodes. The as-received $FeS_2$ electrode shows three voltage plateaus during the discharge test. However, the ball-milled $FeS_2$ electrode shows two voltage plateaus. To interpret this result, the effect of $FeS_2$ particle size on electrochemical reactions is investigated by unit cell discharge tests, SEM and XRD. As a result, it is found that the transition reaction product ($Li_2+xFe+xS_2$) of $FeS_2$ explains the difference. The as-received $FeS_2$ reacts according to three reaction steps ($FeS_2{\rightarrow}Li_3Fe_2S_4{\rightarrow}Li_2+xFe_1+xS_2{\rightarrow}LiFe_2S_4$). However, ball-milled $FeS_2$ reacts without the $Li_2+xFe_1+xS_2$ stage. In this study, this result is explained by the difference in electrochemical reaction mechanism. The as-received $FeS_2$ has a larger radius than the ball-milled $FeS_2$. Therefore, the lithium ion has to diffuse into the $FeS_2$ unreacted core, and $Li_2+xFe_1+xS_2$, the transition reaction product of as-received $FeS_2$, is formed during this stage.

The Effect of Lithia Addition on the Sodium Ion Conductivity of Vapor Phase Converted Na-β"-alumina/YSZ Solid Electrolytes

  • Sasidharanpillai, Arun;Kim, Hearan;Cho, Yebin;Kim, Dongyoung;Lee, Seungmi;Jung, Keeyoung;Lee, Younki
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.191-200
    • /
    • 2022
  • Na-β"-Al2O3 has been widely employed as a solid electrolyte for high-temperature sodium (Na) beta-alumina batteries (NBBs) thanks to its superb thermal stability and high ionic conductivity. Recently, a vapor phase conversion (VPC) method has been newly introduced to fabricate thin Na-β"-Al2O3 electrolytes by converting α-Al2O3 into β"-Al2O3 in α-Al2O3/yttria-stabilized zirconia (YSZ) composites under Na+ and O2- dual percolation environments. One of the main challenges that need to be figured out is lowered conductivity due to the large volume fraction of the non-Na+-conducting YSZ. In this study, the effect of lithia addition in the β"-Al2O3 phase on the grain size and ionic conductivity of Na-β"-Al2O3/YSZ solid electrolytes have been investigated in order to enhance the conductivity of the electrolyte. The amount of pre-added lithia (Li2O) precursor as a phase stabilizer was varied at 0, 1, 2, 3, and 4 mol% against that of Al2O3. It turns out that ionic conductivity increases even with 1 mol% lithia addition and reaches 67 mS cm-1 at 350 ℃ of its maximum with 3 mol%, which is two times higher than that of the undoped composite.

Properties of Capacity on Carbon Electrode in EC:MA Electrolytes - I. Effect of Mixing Ratio on the Electrochemical Properties - (EC:MA 혼합전해질에서 카본 전극의 용량 특성 - I. 전기화학적 특성에 대한 혼합비의 영향 -)

  • Park, Dong-Won;Kim, Woo-Seong;Son, Dong-Un;Kim, Sung-Phil;Choi, Yong-Kook
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.183-187
    • /
    • 2006
  • The choice of solvents for electrolytes solutions is very important to improve the characteristics of charge/discharge in the Li-ion battery system. Such solvent systems have been widely investigated as electrolytes for Li-ion batteries. In this paper, the electrochemical properties of the solid electrolyte interphase film formed on carbon anode surface and the solvent decomposition voltage in 1 M LiPF6/EC:MA(x:y) electrolyte solutions prepared from the various mixing volume ratios are investigated by chronopotentiometry, cyclic voltammetry, and impedance spectroscopy. As a result, the solvent decomposition voltages are varied with the ionic conductivity of the electrolyte. Electrochemical properties of the passivation film were different, which are dependent on the mixture ratio of the solvents. Therefore, the most appropriate mixing ratio of EC and MA as a solvent in 1 M $LiPF_6/(EC+MA)$ system for Li-ion battery is approximately 1:3 (EC:MA, volume ratio).

Preparation and Characterization of PVdF Microporous Membranes with PEG Additive for Rechargeble Battery (Poly(ethylene glycol)를 첨가한 이차전지용 poly(vinylidene fluoride) 미세다공성 분리막의 제조와 물성)

  • Nam, Sang-Yong;Jeong, Mi-Ae;Yu, Dae-Hyun;Koh, Mi-Jin;Rhim, Ji-Won;Byun, Hong-Sik;Seo, Myung-Su
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.84-93
    • /
    • 2008
  • Poly(vinylidene fluoride) has received much attention in the last several years for the lithium secondary batteries. In this study, to enhance the porosity, PVdF was prepared by phase inversion method using as an additive, PEG (poly(ethylene glycol)), with N,N-dimethylformamid as a solvent. The pores are generated during the solvent and non-solvent exchange process in the coagulation bath filled with non-solvent (distilled water). The surface and cross-section of the membranes were observed with a scanning electron microscopy (SEM). The mechanical property of the membrane was determined by using an universal testing machine (UTM) and thermal property was verified by heat shrinkage. Uniformed sponge structure of PVdF-PEG membrane for the lithium secondary batteries was prepared with 10 wt% of PEG concentration in the PVdF-PEG solution. Porosity, elongation and tensile strengh of the membrane were 87%, 75.45%, and 275. 27 MPa respectively.

Replacement of Yellow Maize with Pearl Millet (Pennisetum typhoides), Foxtail Millet (Setaria italica) or Finger Millet (Eleusine coracana) in Broiler Chicken Diets Containing Supplemental Enzymes

  • Rama Rao, S.V.;Raju, M.V.L.N.;Reddy, M.R.;Panda, A.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.6
    • /
    • pp.836-842
    • /
    • 2004
  • An experiment was conducted to study the performance of broilers chicks (2 to 42 d of age) fed diets containing pearl millet (PM, Pennisetum typhoides), foxtail millet (FOM, Setaria italica) or finger millet (FIM, Elusine coracana) totally replacing (w/w) yellow maize (YM) with and with out supplementing non-starch polysaccharide (NSP) hydrolysing enzymes at the rate of 0.5 g/kg diet. Enzyme preparation contained amylase 2,400 units, hemi-cellulase 5,400 units, cellulase 12,000 units, protease 2,400 units and beta-glucanase 106 units/g. Each diet was fed to eight replicates (five female Vencob broilers/replicate) housed in stainless steel battery brooders. The estimated metabolizable energy (ME) contents of YM, PM, FOM and FIM were FM (PM) were about 3,389, 2,736, 3,303 and 2,846 kcal/kg, respectively. Total replacement of YM with FOM did not influence the body weight gain, ready to cook yield, relative weights of giblet, liver, intestine, lymphoid organs (bursa and spleen) and length of intestine, antibody titers and livability at 42 d of age. But the food efficiency decreased significantly in FOM fed broilers compared those fed YM. Further, the fat content in thigh muscle reduced with FOM fed groups compared to those fed YM. The performance of broilers decreased significantly in PM and FIM fed broilers compared to those fed YM. The relative weights of giblet, gizzard and liver increased in FIM fed groups compared to those fed YM as the principal source of energy in broilers. Incorporation of NSP hydrolysing enzymes in commercial broiler diets improved the efficiency of feed utilization during starter phase but not at 42 d of age. The results thus indicate that yellow maize can be replaced in toto on weight basis in commercial broiler diets without affecting the performance. Supplementation of NSP hydrolysing enzymes was beneficial in enhancing feed utilization during the starter phase.

Li Ion Diffusivity and Rate Performance of the LiFePO4 Modified by Cr Doping

  • Park, Chang-Kyoo;Park, Sung-Bin;Shin, Ho-Chul;Cho, Won-Il;Jang, Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.191-195
    • /
    • 2011
  • This study reports the root cause of the improved rate performance of $LiFePO_4$ after Cr doping. By measuring the chemical diffusion coefficient of lithium ($D_{Li}$) using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), the correlation between the electrochemical performance of $LiFePO_4$ and Li diffusion is acquired. The diffusion constants for $LiFePO_4$/C and $LiFe_{0.97}Cr_{0.03}PO_4$/C measured from CV are $2.48{\times}10^{-15}$ and $4.02{\times}10^{-15}cm^2s^{-1}$, respectively, indicating significant increases in diffusivity after the modification. The difference in diffusivity is also confirmed by EIS and the $D_{Li}$ values obtained as a function of the lithium content in the cathode. These results suggest that Cr doping facilitates Li ion diffusion during the charge-discharge cycles. The low diffusivity of the $LiFePO_4$/C leads to the considerable capacity decline at high discharge rates, while high diffusivity of the $LiFe_{0.97}Cr_{0.03}PO_4$/C maintains the initial capacity, even at high C-rates.

Synthesis of TiO2 nanoparticles induced by electron beam irradiation and their electrochemical performance as anode materials for Li-ion batteries

  • Ahn, Ja-Hwa;Eom, Ji-Yong;Kim, Jong-Huy;Kim, Hye Won;Lee, Byung Cheol;Kim, Sung-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.75-80
    • /
    • 2015
  • We introduce a new synthesis method to prepare small TiO2 nanoparticles with a narrow particle size distribution, which is achieved by electron beam (E-beam) irradiation. The effects of E-beam irradiation on the synthesis of TiO2 nanoparticles and the electrochemical performance of TiO2 nanoparticles as alternative anode materials for Li-ion batteries are investigated. The TiO2 nanoparticles induced by E-beam irradiation present better cycling performance and rate capability than the TiO2 nanoparticles synthesized by normal hydrolysis reaction. The better electrochemical performance is attributed to small particle size and narrow particle size distribution, resulting in the large surface area that provides innumerable reaction sites and short diffusion length for Li+ through TiO2 nanoparticles.

Development of FCHEV Virtual Platform using Motor Model Based on Mathematical Formulation (수학적 모터 모델 기반 연료전지 자동차 가상 플랫폼 개발)

  • Kim, Sung-Soo;Park, Sangcheol;Choi, Jangyoung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.31-39
    • /
    • 2013
  • A virtual chassis platform for Fuel Cell Hybrid Electric Vehicles(FCHEV) has been developed, and a virtual platform similar to the actual system has been composed. In addition, major components such as a motor, fuel cell and battery for the virtual platform have been constructed by using a mathematical formulation. The FCHEV virtual platform using a detailed model based on the mathematical formula is capable of simulating various conditions according to changes of the control logic and component modules to evaluate performance, considering the vehicle dynamic characteristics. Usability of the mathematical model has been verified by comparative simulations according to the motor current control variation. In addition, reliability of the developed virtual chassis platform has been verified by simulating its fuel consumption with the UDDS(Urban Dynamometer Driving Schedule) FTP-72 velocity profile.

Synthesis and Electrochemical Properties of Nanocrystalline LiFePO4 Obtained by Different Methods

  • Son, C.G.;Chang, D.R.;Kim, H.S.;Lee, Y.S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.103-109
    • /
    • 2011
  • Nanocrystalline $LiFePO_4$ powders were prepared at 660-$670^{\circ}C$ in an Ar atmosphere using two different synthetic routes, solid-state and sol-gel. Both materials showed well-developed XRD patterns without any impurity peaks. Particles composed in the range of 200-300 nm from the solid-state method, and 50-100 nm from the sol-gel method, were confirmed through scanning electron microscopy and dynamic light scattering. The $LiFePO_4$ obtained by the sol-gel method offered a high discharge capacity (153 mAh/g) and stable discharge behavior, even at elevated temperatures (50 and $60^{\circ}C$), whereas poor electrochemical performance was observed from the solid-state method. Rate capability studies for sol gel-derived $LiFePO_4$ ranged from 0.2 to 30 C, which revealed excellent retention over 70 cycles with a 99.9% capacity.

The Characteristics of Asymmetric Hybrid Supercapacitor Cells and Modules for Power Quality Stabilization (전력품질 안정화용 비대칭 하이브리드 슈퍼커패시터 셀 및 모듈 특성)

  • Lee, Byung-Gwan;Maeng, Ju-Cheul;Lee, Joung-Kyu;Yoon, Jung-Rag
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.617-621
    • /
    • 2016
  • In addition to the energy storage facilities based on high power technologies, Electric double layer capacitors(EDLC) are today's candidate for power quality stabilization. However, its low energy density is often inhibiting factor for application of electric power industry. Hybrid supercapacitor is an promising energy storage device that positioned between conventional EDLC and Li-ion battery. This paper describes the preparation and characteristics of a hybrid supercapacitor and module for power quality stabilization. A cylindrical 3200F hybrid supercapacitor ($60{\times}74.5mm$) was assembled by using the $Li_4Ti_5O_{12}$ electrode as an anode and activated carbon as a cathode. It shows 2.5 times higher energy density than conventional EDLC with the same volume. In order to determine the characteristics of the hybrid supercapacitor Module for uninterruptible power supply (UPS), hybrid supercapacitor cells were connected in series with active balancing circuit. At even the high current density of 14A(10C), Module prepared by 18 cells showed the capacitance of 170F at 30~50V, suggesting the applicability for UPS.