• Title/Summary/Keyword: Battery Life

Search Result 601, Processing Time 0.025 seconds

Study of electric vehicle battery reliability improvement

  • Ismail, A.;Jung, W.;Ariffin, M.F.;Noor, S.A.
    • International Journal of Reliability and Applications
    • /
    • v.12 no.2
    • /
    • pp.123-129
    • /
    • 2011
  • Due to restriction of vehicle emissions and high demand for fossil fuels nowadays, car manufacturers around the world are looking into alternative ways in introducing new car model that would vastly captured the market. Thus, Electric Vehicle (EV) has been further developed to take the advantage of the current global issues on price of fossil fuels and impact on the environment. Since car battery plays the crucial role on the overall performance of EV, many researchers have been working on improving the component. This paper focused on the reliability of EV battery which involves recognizing failure types, testing method and life prediction method. By focusing on these elements, the reliability feature being identified and as a result the batteries life will be prolonged.

  • PDF

The Study of High Speed Charging Algorithm for Secondary Park Battery of Ni-Cd (Ni-Cd 이차 팩 전지를 위한 급속 충전 알고리즘에 관한 연구)

  • 진달복;이현희;이영석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.8
    • /
    • pp.1276-1282
    • /
    • 2002
  • In this paper, a high speed charging algorithm that charges Ni-Cd secondary pack battery within 40 minutes is implementation. Proposed algorithm is that suppling 4 stage pulse instead of constant voltage or current. That makes charge time short, temperature low, and extends battery life. Experimental results show that secondary pack battery is charged within 40 minutes and achieved life time about 2000 cycle.

Power Consumption Analysis and Minimization of Electronic Shelf Label System (전자가격표시시스템의 소모전력 분석 및 최소화 방안)

  • Woo, Rinara;Kim, Jungjoon;Seo, Dae-Wha
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.2
    • /
    • pp.75-80
    • /
    • 2014
  • Energy consumption of sensor nodes is minimized because it has limited energy generator in wireless sensor network. Electronic shelf label system is one of application fields using wireless sensor networks. Battery size of small apparatus for displaying price is restricted. Therefore its current consumption have to be minimized. Furthermore the method for minimization of peak current would be considered because life cycle of coin battery used to display or RF is vulnerable to intensity of drain current. In this paper, we analyze current consumption pattern of low-power electronic shelf label system. Then we propose the method for minimization of current consumption by modification of software and hardware. Current consumption of the system using proposed method are approximately 15 to 20 percent lower than existing system and the life cycle of the system is approximately 10 percent higher than existing system.

A Study on the Additive of Positive Paste in Lead Acid Battery (납축전지 양극 Paste 첨가제에 관한 연구)

  • Jeong, Soon-Wook;Ku, Bon-Keun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.196-201
    • /
    • 2010
  • The influence of red lead($Pb_3O_4$) to curing and formation reaction properties when it was added in positive material of lead acid battery for vehicle use has been investigated. At the results, it was confirmed that the addition of red lead led 4BS crystal size to be smaller and increased the rates of 4BS formation and Pb consumption. Consequently the curing time was shortened to half compared with that of red lead-free one. In addition to this, the lead acid battery prepared by adding red lead showed 14% higher efficiency at the life cycle test than that without red lead.

The Study of High Speed Charging Algorithm for Secondary Pack Battery (이차 팩 전지를 위한 급속 충전 알고리즘에 관한 연구)

  • Lee, Hyeon-Hee;Lee, Young-Seok;Yeo, Un-Jin;Whang, Sang-Moon;Kim, Seong-Gon;Chin, Dal-Bok
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2649-2652
    • /
    • 2002
  • In this paper, a high speed charging algorithm that charges secondary pack battery within 40 minutes is implementation. Proposed algorithm is that suppling 4 stage pulse instead of constant voltage or current. That makes charge time short, temperature low, and extends battery life. Experimental results show that secondary pack battery is charged within 40 minutes and achieved life time about 2000 cycle.

  • PDF

Development of Solar Lighting Controller and Monitoring System (태양광 가로등 제어장치 및 모니터링 시스템 개발)

  • Kim, Tae-Yeop;Jung, Maeng-Hwa;Goh, Kwon-Sung;Yoo, Kwang-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.331-333
    • /
    • 2001
  • The flooded type battery is used for solar lighting system. Because the characteristic of flooded type battery is the short life time, the maintenance cost is high. So the using floe fed type battery in this system is inappropriate. The valve regulated lead acid batter(VRLA) is the maintenance free and cycle service purpose. This paper presents the development of control system and monitoring system to applied VRLA battery for maintenance free and long life time in system.

  • PDF

Battery Charge and Discharge Optimization for Vehicle-to-grid Regulation Service (전력 보조서비스 제공을 위한 전기자동차 충/방전 최적화)

  • Kim, Wook-Won;Shin, Hong-Yul;Kim, Jin-O;Kim, Kyu-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1033-1038
    • /
    • 2014
  • Electric vehicles should be connected to power system for charge and discharge of battery. Besides vehicle's battery is charged for a power source, it is also reversibly possible to provide power source from battery to power system. Researches on battery usage for regulation resources have been progressed and could cause cost increase excessively because they distribute regulation capacity equally without considering the battery wear cost of SOC, temperature, voltage and so on. This causes increase of grid maintenance cost and aggravate economical efficiency. In this paper it is studied that the cost could be minimized according to the battery condition and characteristic. The equation is developed in this paper to calculate the possible number of charge and discharge cycle, according to SOC level and weighting factors representing the relation between battery life and temperature as well as voltage. Thereafter, the correlation is inferred between the battery condition and wear cost reflecting the battery price, and the expense of compensation is decided according to the condition on battery wear-out of vehicle. In addition, using realtime error between load and load expectation, it is calculated how much regulation capacity should be provided.

Proposal Protection Algorithm of Dendritic Lithium for Battery Second Use ESS (재사용 ESS를 위한 리튬 배터리 덴드라이트 보호 알고리즘 제안)

  • Song, Jung-Yong;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.422-426
    • /
    • 2018
  • The lithium-ion battery pack of an electric vehicle (EV) deserves to be considered for an alternative use within smart-grid infrastructure. Despite the long automotive service life, EV batteries retain over 70~80% of their initial capacity. These battery packs must be managed for their reliability and safety. Therefore, a battery management system (BMS) should use specific algorithms to measure and estimate the status of the battery. Most importantly, the BMS of a grid-connected energy storage system (ESS) must ensure that the lithium-ion battery does not catch fire or explode due to an internal short from uncontrolled dendrite growth. In other words, the BMS of a lithium-ion battery pack should be capable of detecting the battery's status based on the electrochemical reaction continuously until the end of the battery's lifespan. In this paper, we propose a new protection algorithm for a dendritic lithium battery. The proposed algorithm has applied a parameter from battery pack aging results and has control power managing.

A Study on the V2G Application using the Battery of Electric Vehicles under Smart Grid Environment (스마트그리드 환경에서 전기자동차 배터리를 이용한 V2G의 활용방안에 관한 연구)

  • Choi, Jin-Young;Park, Eun-Sung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.1
    • /
    • pp.40-45
    • /
    • 2014
  • This study examines the system and process of battery stored energy in vehicles and suggest the effective area for the use of V2G(vehicle-to-grid) from Jeju Smart Grid Demonstration Project. V2G means technology of electric power transmission from the battery of electric-drive vehicles to state grid. As for the increasing of effectiveness for demand-side control, V2G is a very good alternative. In the U.S., the utilization of electric vehicles is under 40% on average. In this case, we can use he battery of electric vehicle as role of frequency regulation or generator of demand-side resource. V2G, which is the element of Smart Transportation, consists of electric vehicle battery, BMS(battery management system), OBC(on-board charger), charging infrastructure, NOC(network operating center) and TOC(total operation center). V2G application has been tested for frequency regulation to secure the economical efficiency in the United States. In this case, the battery cycle life is not verified its disadvantage. On the other hand, Demand Response is required by low c-rate of battery in electric vehicle and It can be small impact on the battery cycle life. This paper concludes business area of demand response is more useful than frequency regulation in V2G application of electric vehicles in Korea. This provides the opportunity to create a new business for power grid administrator with VPP(virtual power plant).

Wireless sensor network protocol comparison for bridge health assessment

  • Kilic, Gokhan
    • Structural Engineering and Mechanics
    • /
    • v.49 no.4
    • /
    • pp.509-521
    • /
    • 2014
  • In this paper two protocols of Wireless Sensor Networks (WSN) are examined through both a simulation and a case study. The simulation was performed with the optimized network (OPNET) simulator while comparing the performance of the Ad-Hoc on demand Distance Vector (AODV) and the Dynamic Source Routing (DSR) protocols. This is compared and shown with real-world measurement of deflection from eight wireless sensor nodes. The wireless sensor response results were compared with accelerometer sensors for validation purposes. It was found that although the computer simulation suggests the AODV protocol is more accurate, in the case study no distinct difference was found. However, it was shown that AODV is still more beneficial in the field as it has a longer battery life enabling longer surveying times. This is a significant finding as a large factor in determining the use of wireless network sensors as a method of assessing structural response has been their short battery life. Thus if protocols which enhance battery life, such as the AODV protocol, are employed it may be possible in the future to couple wireless networks with solar power extending their monitoring periods.