• Title/Summary/Keyword: Batch Process

Search Result 1,278, Processing Time 0.027 seconds

Image Processing System based on Deep Learning for Safety of Heat Treatment Equipment (열처리 장비의 Safety를 위한 딥러닝 기반 영상처리 시스템)

  • Lee, Jeong-Hoon;Lee, Ro-Woon;Hong, Seung-Taek;Kim, Young-Gon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.77-83
    • /
    • 2020
  • The heat treatment facility is in a situation where the scope of application of the remote IOT system is expanding due to the harsh environment caused by high heat and long working hours among the root industries. In this heat treatment process environment, the IOT middleware is required to play a pivotal role in interpreting, managing and controlling data information of IoT devices (sensors, etc.). Until now, the system controlled by the heat treatment remotely was operated with the command of the operator's batch system without overall monitoring of the site situation. However, for the safety and precise control of the heat treatment facility, it is necessary to control various sensors and recognize the surrounding work environment. As a solution to this, the heat treatment safety support system presented in this paper proposes a support system that can detect the access of the work manpower to the heat treatment furnace through thermal image detection and operate safely when ordering work from a remote location. In addition, an OPEN CV-based deterioration analysis system using DNN deep learning network was constructed for faster and more accurate recognition than general fixed hot spot monitoring-based thermal image analysis. Through this, we would like to propose a system that can be used universally in the heat treatment environment and support the safety management specialized in the heat treatment industry.

Fermentative Water Purification based on Bio-hydrogen (생물학적 수소 발효를 통한 수처리 시스템)

  • Lee, Jung-Yeol;Chen, Xue-Jiao;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.926-931
    • /
    • 2011
  • Among various techniques for hydrogen production from organic wastewater, a dark fermentation is considered to be the most feasible process due to the rapid hydrogen production rate. However, the main drawback of it is the low hydrogen production yield due to intermediate products such as organic acids. To improve the hydrogen production yield, a co-culture system of dark and photo fermentation bacteria was applied to this research. The maximum specific growth rate of R. sphaeroides was determined to be $2.93h^{-1}$ when acetic acid was used as a carbon source. It was quite high compared to that of using a mixture of volatile fatty acids (VFAs). Acetic acid was the most attractive to the cell growth of R. sphaeroides, however, not less efficient in the hydrogen production. In the co-culture system with glucose, hydrogen could be steadily produced without any lag-phase. There were distinguishable inflection points in the accumulation of hydrogen production graph that resulted from the dynamic production of VFAs or consumption of it by the interaction between the dark and photo fermentation bacteria. Lastly, the hydrogen production rate of a repeated fed-batch run was $15.9mL-H_2/L/h$, which was achievable in the sustainable hydrogen production.

A Study on Utilization of Vision Transformer for CTR Prediction (CTR 예측을 위한 비전 트랜스포머 활용에 관한 연구)

  • Kim, Tae-Suk;Kim, Seokhun;Im, Kwang Hyuk
    • Knowledge Management Research
    • /
    • v.22 no.4
    • /
    • pp.27-40
    • /
    • 2021
  • Click-Through Rate (CTR) prediction is a key function that determines the ranking of candidate items in the recommendation system and recommends high-ranking items to reduce customer information overload and achieve profit maximization through sales promotion. The fields of natural language processing and image classification are achieving remarkable growth through the use of deep neural networks. Recently, a transformer model based on an attention mechanism, differentiated from the mainstream models in the fields of natural language processing and image classification, has been proposed to achieve state-of-the-art in this field. In this study, we present a method for improving the performance of a transformer model for CTR prediction. In order to analyze the effect of discrete and categorical CTR data characteristics different from natural language and image data on performance, experiments on embedding regularization and transformer normalization are performed. According to the experimental results, it was confirmed that the prediction performance of the transformer was significantly improved when the L2 generalization was applied in the embedding process for CTR data input processing and when batch normalization was applied instead of layer normalization, which is the default regularization method, to the transformer model.

A Study on the Problems and the Betterment Plan in Operating District Units Plan of the City in Busan Metropolitan (부산광역시 지구단위계획의 운영실태에 따른 문제점 및 개선방향에 관한 연구)

  • Kim, Jong Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5D
    • /
    • pp.723-734
    • /
    • 2008
  • In this paper, the problems and betterment plan in operating district units plan are studied by selecting typal case locations based on the types of district units plan of the city of Busan. According to the types, 4 locations of 'type of maintaining preexisting district' and 3 of 'type of managing preexisting district' are selected as case locations, based on a scale and characteristics of each location.In systematical aspects of the case locations, indiscreet upward adjustment of the locations, insignificant participation of the citizens and patternization were recognized as problems. And setting accurate standards for target and range of alteration in line with usage plan of the locations would be necessarily urgent. So through the analysing process of the problems arisen from the case locations I would suggests necessary solutions to improve the effectiveness of the district units plan. And In planning aspects, the similarity between the basic directions and the object, batch-application of the density plan, inadequacy of the usage plan, allocations and patterns of structures, and color planning were recognized to have problematic points. Consequently distinguished specific operating-guidelines would be necessary to achieve the basic directions and the object of district units plan. Furthermore, the building-to-land ratio and floor space index are needed to be exactly calculated through providing accurate and logical standards for appropriate development density of structures.

Optimal Mixing Ratio of Wastewater from Food Waste and Cattle Manure and Hygienic Aspect in Batch Type Anaerobic Digestion (음식물폐수와 축산분뇨의 혼합소화에서 적정 혼합비 및 소화슬러지의 위생성 연구)

  • Jeong, Doo-Young;Chung, Myung-Hee;Kim, Young-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.2
    • /
    • pp.93-100
    • /
    • 2009
  • This research was performed to figure out the optimal mixing ratio of food- to livestock wastewater for the best degradation of organic matter in the anaerobic digestion. The presence of various microorganisms, such as Escherichia coli and Staphylococcus aureus, was also investigated in both wastewater in this process. Enteric bacteria were only found in livestock wastewater, whereas pathogenic bacteria like S. aureus were detected in both wastewater. The optimal mixing ratio of food- to livestock wastewater for the best mineralization was found to fifty to fifty, with reduction ratios of $BOD_5$, CODcr SS as 23.2%, 24.7%, 19.7%, respectively. Hygiene of the digested sludge was also analyzed by counting the number of total colonies and various pathogens. Enterobacteriaceae including E. coli were barely detected in 10 days after reaction. Meanwhile, S. aureus was gradually reduced during reaction, even showing 1,000~5,000 CFU/mL in final days.

Operation of High Performance Elutriation-Type Sludge Fermenter and Feasibility for Its Application (고성능 세정식 슬러지 산발효조의 운전 및 적용성 평가)

  • Ahn, Young-Ho;Speece, R.E.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.85-92
    • /
    • 2005
  • The performance of a novel fermentation process, adopting a sludge blanket type configuration for higher hydrolysis/acidogenesis of the municipal primary sludge, was investigated under batch and semi-continuous conditions with various pH and temperature conditions. This acid elutriation slurry reactor provided higher system performance with a short HRT (5 days) and higher acidogenic effluent quality under pH 9 and thermophilic ($55^{\circ}C$) conditions. The hydrolysis of the sludge was revealed to be significantly dependent on seasonal effects for sludge characteristics but with little impact on acidogenesis. Based on the rainy season at the optimum conditions, VFA production and recovery fraction ($VFA_{COD}/COD$) were $0.18\;g\;VFA_{COD}\;g^{-1}\;VSS_{COD}$ and 63%. As byproducts, nitrogen and phosphorus releasing were $0.006\;g\;N\;g^{-1}\;VSS_{COD}$ and $0.003\;g\;P\;g^{-1}\;VSS_{COD}$, respectively. For the mass balance in a full-scale plant($Q=158,880\;m^3\;day^{-1}$) based on the rainy season, the VFA and non-VFA(as COD) production were $3,110\;kg\;VFA_{COD}\;day^{-1}$ and $1,800\;kg\;COD\;day^{-1}$, resulting in an increase of organics of $31\;mg\;COD\;L^{-1}$ and $20\;mg\;VFA_{COD}\;L^{-1}$ and nutrients of $0.7\;mg\;N\;L^{-1}$ and $0.3\;mg\;P\;L^{-1}$ in the influent sewage. The economical benefit from this process application was estimated to be about $67 per $1,000m^3$ of sewage except for energy requirements and also, better benefits can be expected during the dry season. Also, the results revealed that the process has various additional advantages such as pathogen-free stabilized solids production, excellent solids control and economical benefits.

Estimation of Terminal Sire Effect on Swine Growth and Meat Quality Traits (돼지 성장 및 육질 형질에 영향하는 종료웅돈의 효과)

  • Kim, H.S.;Kim, B.W.;Kim, H.Y.;Iim, H.T.;Yang, H.S.;Lee, J.I.;Joo, Y.K.;Do, C.H.;Joo, S.T.;Jeon, J.T.;Lee, J.G.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.161-170
    • /
    • 2007
  • A submerged biofilm sequencing batch reactor (SBSBR) process, which liquor was internally circulated through sandfilter, was designed, and performances in swine wastewater treatment was evaluated under a condition of no external carbon source addition. Denitrification of NOx-N with loading rate in vertical and slope type of sandfilter was 19% and 3.8%, respectively, showing approximately 5 times difference, and so vertical type sandfilter was chosen for the combination with SBSBR. When the process was operated under 15 days HRT, 105L/hr.m3 of internal circulation rate and 54g/m3.d of NH4-N loading rate, treatment efficiencies of STOC, NH4-N and TN (as NH4-N plus NOx-N) was 75%, 97% and 85%, respectively. By conducting internal circulation through sandfilter, removal performances of TN were enhanced by 14%, and the elevation of nitrogen removal was mainly attributed to occurrence of denitrification in sandfilter. Also, approximately 57% of phosphorus was removed with the conduction of internal circulation through sandfilter, meanwhile phosphorus concentration in final effluent rather increased when the internal circulation was not performed. Therefore, It was quite sure that the continuous internal circulation of liquor through sandfilter could contribute to enhancement of biological nutrient removal. Under 60g/m3.d of NH4-N loading rate, the NH4-N level in final effluent was relatively low and constant(below 20mg/L) and over 80% of nitrogen removal was maintained in spite of loading rate increase up to 100g/m3.d. However, the treatment efficiency of nitrogen was deteriorated with further increase of loading rate. Based on this result, an optimum loading rate of nitrogen for the process would be 100g/m3.d.

Identification of Sorption Characteristics of Cesium for the Improved Coal Mine Drainage Treated Sludge (CMDS) by the Addition of Na and S (석탄광산배수처리슬러지에 Na와 S를 첨가하여 개량한 흡착제의 세슘 흡착 특성 규명)

  • Soyoung Jeon;Danu Kim;Jeonghyeon Byeon;Daehyun Shin;Minjune Yang;Minhee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.125-138
    • /
    • 2023
  • Most of previous cesium (Cs) sorbents have limitations on the treatment in the large-scale water system having low Cs concentration and high ion strength. In this study, the new Cs sorbent that is eco-friendly and has a high Cs removal efficiency was developed by improving the coal mine drainage treated sludge (hereafter 'CMDS') with the addition of Na and S. The sludge produced through the treatment process for the mine drainage originating from the abandoned coal mine was used as the primary material for developing the new Cs sorbent because of its high Ca and Fe contents. The CMDS was improved by adding Na and S during the heat treatment process (hereafter 'Na-S-CMDS' for the developed sorbent in this study). Laboratory experiments and the sorption model studies were performed to evaluate the Cs sorption capacity and to understand the Cs sorption mechanisms of the Na-S-CMDS. The physicochemical and mineralogical properties of the Na-S-CMDS were also investigated through various analyses, such as XRF, XRD, SEM/EDS, XPS, etc. From results of batch sorption experiments, the Na-S-CMDS showed the fast sorption rate (in equilibrium within few hours) and the very high Cs removal efficiency (> 90.0%) even at the low Cs concentration in solution (< 0.5 mg/L). The experimental results were well fitted to the Langmuir isotherm model, suggesting the mostly monolayer coverage sorption of the Cs on the Na-S-CMDS. The Cs sorption kinetic model studies supported that the Cs sorption tendency of the Na-S-CMDS was similar to the pseudo-second-order model curve and more complicated chemical sorption process could occur rather than the simple physical adsorption. Results of XRF and XRD analyses for the Na-S-CMDS after the Cs sorption showed that the Na content clearly decreased in the Na-S-CMDS and the erdite (NaFeS2·2(H2O)) was disappeared, suggesting that the active ion exchange between Na+ and Cs+ occurred on the Na-S-CMDS during the Cs sorption process. From results of the XPS analysis, the strong interaction between Cs and S in Na-S-CMDS was investigated and the high Cs sorption capacity was resulted from the binding between Cs and S (or S-complex). Results from this study supported that the Na-S-CMDS has an outstanding potential to remove the Cs from radioactive contaminated water systems such as seawater and groundwater, which have high ion strength but low Cs concentration.

Evaluation of Reliability about Short TAT (Turn-Around Time) of Domestic Automation Equipment (Gamma Pro) (국산 자동화 장비(Gamma Pro)의 결과보고시간 단축에 대한 유용성 평가)

  • Oh, Yun-Jeong;Kim, Ji-Young;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.197-202
    • /
    • 2010
  • Purpose: Recently, many hospitals have been tried to increase the satisfaction of the outpatients through blood-gathering, exam, result notice and process in a day. Each laboratory has been used the automatic equipment for the rapid requests of the result notice and the increase of the reliability and efficiency. Current automatic equipments that have been limited short TAT(Turn-Around Time)because of the restricted batch lists and 1 tip-5 detectors. The Gamma Pro which is made in Korea to improve the shortcomings of existing automation equipment, complemented with capacity to perform a wide range of domestic automation equipment. In this study, we evaluated the usefulness and reliability of short TAT by comparing Gamma Pro with current automatic equipment. Materials and Methods: We studied the correlation between Gamma Pro and RIA-mat 280 using the respective 100 specimens of low or high density to the patients who were requested the thyroid hormone test (Total T3, TSH and Free T4) in Samsung Medical Center Sep. 2009. To evaluate the split-level Gamma Pro, First, we measured accuracy and carry over on the tips. Second, the condition of optimal incubation was measured by the RPM (Revolution Per Minute) and revolution axis diameter on the incubator. For the analysis for the speed of the specimen-processing, TAT was investigated with the results in a certain time. Result: The correlation coefficients (R2) between the Gamma Pro and RIA-mat 280 showed a good correlation as T3 (0.98), TSH (0.99), FT4 (0.92). The coefficient of variation (C.V) and accuracy was 0.38 % and 98.3 % at tip 1 and 0.39 % and 98.6 % at tip 2. Carry over showed 0.80 % and 1.04% at tip 1 and tip 2, respectively. These results indicate that tips had no effect on carry over contamination. At the incubator condition, we found that the optimal condition was 1.0mm of diameter at 600RPM in 1.0mm and 1.5mm of at 500RPM or 1.0mm and 1.5 mm of diameter at 600 RPM. the Gamma Pro showed that the number of exam times were increased as maximum 20 times/day comparing to 6 times/day by current automatic equipment. These results also led to the short TAT from 4.20 hour to 2.19 hours in whole processing. Conclusion: The correlation of between the Gamma Pro and RIA-mat 280 was good and has not carry over contamination in tips. The domestic automation equipment (Gamma Pro) decreases the TAT in whole test comparing to RIA-280. These results demonstrate that Gamma Pro has a good efficiency, reliability and practical usefulness, which may contribute to the excellent skill to process the large scale specimens.

  • PDF

Influence of Organic Acids Residual Concentration by the Change of F/M Ratio on Sludge Settleability in Advanced Sewage Treatment Processes (하.폐수 고도처리시 F/M비 변화에 따른 유기산 잔류 농도가 슬러지 침강성에 미치는 영향)

  • Park, Young-Ki;Kim, Young-Il;Kim, Sl-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.42-47
    • /
    • 2006
  • The biological nutrient treatment is formed with repetition and rearrangement of anaerobic, anoxic and oxic tank. In this case, VFAs is generated in the anaerobic tank and the anoxic tank. The VFAs is an important factor for removal of nitrogen and phosphate and SVI. So, in this study I investigated to find a relationship among the generation rate of the VFAs according to the change of F/M ratio and the characteristic which can eliminate organic matter and nitrogen according to the change of residual concentration of the VFAs and the efficiency of the process and also SVI in wastewater treatment. $A^2/O$ process was used for wastewater treatment. F/M ratio was under the control of the change of MLSS concentration. When the F/M ratio was changed from 0.16 to 0.08 kg-BOD/kg-MLSS/day, the VFAs's production volume increased based on the reduction of F/M ratio in batch reaction. And the residual concentration of the VFAs decreased at first and then increased later. SVI and SS were high when F/M ratio was $0.16kg/kg{\cdot}d$ and showed stable status when F/M ratio decreased $0.11{\sim}0.13kg/kg{\cdot}d$. However, SVI and SS continuously increased with decrease of F/M ratio and were high at $0.08kg/kg{\cdot}d$. In the result of comparison between residual concentration of the VFAs and denitrification rate in anoxic tank, the less residual volume of the VFAs was in anoxic tank, the higher denitrification ratio became. The optimal residual-concentration of the VFAs considering SVI and removal efficiency of nitrogenwas $1.4{\sim}2.2mg/L$. At that time F/M ratio was $0.11{\sim}0.13$ kg-BOD/kg-MLSS/day.