• Title/Summary/Keyword: Batch Plant

Search Result 264, Processing Time 0.024 seconds

Status and Prospects of the Utilization of Medicinal Plants in the Philippines

  • Waje, Catherine K.
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2005.11a
    • /
    • pp.11-16
    • /
    • 2005
  • Utilization of herbal medicine has been an intrinsic part of Philippine culture for many centuries. In spite of tremendous development in the field of modern medicine, traditional and alternative medicine will continue to flourish and take an important role in meeting the basic health needs of the people. The National Integrated Research Program on Medicinal Plant (NIRPROMP), the lead government institution for herbal medicinal research had already validated ten medicinal plants and is currently studying new batch of medicinal plants. Five of the ten clinically-tested medicinal plants have been elevated to herbal medicinal drugs that are now being commercially manufactured in the different parts of the country. Research on medicinal plants takes longer time as the nature of medical research dictates it to be. It must adhere to the internationally accepted standards of medicinal research in the Philippines was observed making alternative medicine an effective health delivery system to the people.

  • PDF

Changes of Plant Cell Size Index by Culture Conditions (배양 조건에 따른 식물세포 크기 지수의 변화)

  • 김상목;박인석;이상윤;이규화;김동일
    • KSBB Journal
    • /
    • v.13 no.4
    • /
    • pp.438-443
    • /
    • 1998
  • Effects of various environmental factors on cell size index(FCW/DCW) in Thalictrum rugosum. Lithospermum erythrorhizon and Taxus cuspidata plant cell suspension cultures were investigated. Time course change of cell size index were also observed. In batch cultures, FCW/DCW increased according to the decrease of sugar concentration. For short-term experiment within 24 hr, FCW/DCW value could be reduced significantly by increasing sugar concentration. When an osmoticum such as mannitol was added, FCW/DCW converged to a low value. Therefore, it was confirmed that osmolality of the medium was important in determining cell size or water content of the cells. Inorganic salts or treatment with organic solvent also exhibited some effect on the cell size index. However, pH and centrifugal force did not show any influences. On the other hand, it was found that the addition of Pluronic F-68 reduced FCW/DCW. By combining these results effectively, it may be possible to increase the cell concentration in high density culture to a higher extent.

  • PDF

Removal of Organic Matter and Pharmaceuticals in Wastewater Effluent through Managed Aquifer Recharge (하수처리수를 이용한 대수층 함양관리 기술(Managed Aquifer Recharge)에서 유기물과 의약화합물 제거)

  • Im, Huncheol;Yeo, Inseol;Maeng, Sung-Kyu;Choi, Heechul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.3
    • /
    • pp.182-190
    • /
    • 2015
  • This study was conducted to evaluate the removal efficiencies of organic matter and pharmaceuticals and to identify the removal mechanism of pharmaceuticals using sand obtained from Hwangryong River in Jangsung. Batch and column studies were used to simulate managed aquifer recharge (MAR) systems. All experiments were performed using field effluent containing pharmaceuticals from Damyang Wastewater Treatment Plant as an influent. Based on the removal results of organic matter and pharmaceuticals from the batch and column experiments, soil organic matter (SOM) and microbial activity were found to effectively remove target contaminants. The removal of organic matter was found to increase under biotic conditions. Neutral and cation pharmaceuticals (iopromide, estrone, and trimethoprim) exhibited removal efficiencies higher than 70% from natural sand and baked sand media in batch and column studies. Carbamazepine persisted in the sand batch and column studies. Anion pharmaceuticals (ketoprofen, ibuprofen, and diclofenac) can be removed under conditions featuring high SOM and adenosine triphosphate (ATP) concentrations in the sand surface. Based on the experimental Batch and column results, biodegradation and sorption were found to be important mechanisms for the removal of pharmaceuticals within the simulated MAR systems.

Optimal Design of Batch-Storage Network Including Uncertainty and Waste Treatment Processes (불확실한 공정과 불량품 처리체계를 포함하는 공정-저장조 망 최적설계)

  • Yi, Gyeongbeom;Lee, Euy-Soo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.585-597
    • /
    • 2008
  • The aim of this study was to find an analytic solution to the problem of determining the optimal capacity (lot-size) of a batch-storage network to meet demand for a finished product in a system undergoing random failures of operating time and/or batch material. The superstructure of the plant considered here consists of a network of serially and/or parallel interlinked batch processes and storage units. The production processes transform a set of feedstock materials into another set of products with constant conversion factors. The final product demand flow is susceptible to short-term random variations in the cycle time and batch size as well as long-term variations in the average trend. Some of the production processes have random variations in product quantity. The spoiled materials are treated through regeneration or waste disposal processes. All other processes have random variations only in the cycle time. The objective function of the optimization is minimizing the total cost, which is composed of setup and inventory holding costs as well as the capital costs of constructing processes and storage units. A novel production and inventory analysis, the PSW (Periodic Square Wave) model, provides a judicious graphical method to find the upper and lower bounds of random flows. The advantage of this model is that it provides a set of simple analytic solutions while also maintaining a realistic description of the random material flows between processes and storage units; as a consequence of these analytic solutions, the computation burden is significantly reduced.

Evaluation on the Mechanical Properties of Strain Hardening Cement Composite by Mixing Method for Application at Building Construction Site (건축시공 현장적용을 위한 비빔방법에 따른 SHCC의 역학적 성능 평가)

  • Jeon, Young-Seok;Kim, Gyu-Yong;Nam, Jeong-Soo;Kim, Young-Deok;Jeong, Jae-Hong;Lee, Seung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.6
    • /
    • pp.530-537
    • /
    • 2011
  • The purpose of this study is to examine material performance of fiber reinforced cement composite for mass production. It is necessary to manufacture SHCC(Strain Hardening Cement Composite) by batch plant for field application and mass production. For the study, a mock-up test of SHCC manufactured in the batch plant was conducted, and the performance was compared with SHCC manufactured in the laboratory. Assessment items were freshness and hardening properties. Specifically, direct tensile test machine was used for performance verification of SHCC. As a result, there was a tendency of less satisfactory fiber dispersion and performance of strain hardening compared with the performance of SHCC manufactured in the laboratory. To address this, dry mixing and mortar mixing time should be increased compared to laboratory mixing, and injection time of an agent such as a water reducing agent should be properly controlled according to mixing combination, or the capacity to secure dispersion and homogeneity of material.

The Study of Modified Sequencing Batch Reactor Process for Small Advanced Wastewater Treatment (소규모 고도하수처리를 위한 변형 연속회분식공정에 관한 연구)

  • Han, Woonwoo;Kim, Kyuhyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.3
    • /
    • pp.35-43
    • /
    • 2008
  • This study was carried out to estimate the performance of modified sequencing batch reactor (SBR) process by the application of SBR process for small advanced wastewater treatment plant. Organic, nitrogen and phosphorus were able to remove in the unit reactor by SBR process and it would be able to select the suitable operation method. The plant was operated to achieve high performance with influent control, optimum anoxic/oxic condition using intermediate aeration method, and solid (sludge) /liquid (effluent) separation by modified decanter. The optimum operating mode was 3Cycles a day and intermediate input and aeration. Under these conditions, the treatment efficiencies were good with 60% of designed flow rate and low influent quality. When the influent concentrations of BOD and CODMn were 120.4 mg/L and 95.7 mg/L, respectively. The effluent concentrations of BOD and CODMn were 6.8 mg/L and 11.0 mg/L, respectively. The average removal efficiencies of BOD and CODMn were 94.4% and 88.5%, respectively. The removal efficiencies of T-N and T-P were 69.6% and 73.6%, respectively when the average T-N and T-P concentrations were 32.2mg/L and 4.65mg/L, respectively. The T-N and T-P removal efficiencies were slightly decreased to 58.8% and 68.5%, respectively in the winter season but its were also stable efficiencies. BOD, T-N and T-P were removed by 90%. 67% and 46% respectively in the first anoxic/oxic condition, in addition to T-P was removed by 70% in the second anoxic/oxic condition. From the results, modified sequencing batch reactor (SBR) process is suitable for small advanced wastewater treatment.

  • PDF

Optimal Design of Generalized Process-storage Network Applicable To Polymer Processes (고분자 공정에 적용할 수 있는 일반화된 공정-저장조 망구조 최적설계)

  • Yi, Gyeongbeom;Lee, Euy-Soo
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.249-257
    • /
    • 2007
  • The periodic square wave (PSW) model was successfully applied to the optimal design of a batch-storage network. The network structure can cover any type of batch production, distribution and inventory system, including recycle streams. Here we extend the coverage of the PSW model to multitasking semi-continuous processes as well as pure continuous and batch processes. In previous solutions obtained using the PSW model, the feedstock composition and product yield were treated as known constants. This constraint is relaxed in the present work, which treats the feedstock composition and product yield as free variables to be optimized. This modification makes it possible to deal with the pooling problem commonly encountered in oil refinery processes. Despite the greater complexity that arises when the feedstock composition and product yield are free variables, the PSW model still gives analytic lot sizing equations. The ability of the proposed method to determine the optimal plant design is demonstrated through the example of a high density polyethylene (HDPE) plant. Based on the analytical optimality results, we propose a practical process optimality measure that can be used for any kind of process. This measure facilitates direct comparison of the performance of multiple processes, and hence is a useful tool for diagnosing the status of process systems. The result that the cost of a process is proportional to the square root of average flow rate is similar to the well-known six-tenths factor rule in plant design.

Antibody Production in Plant Cell Cultures

  • Lee, James M.
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.67-78
    • /
    • 1995
  • Monoclonal antibodies (MoAbs) are a highly diversified class of proteins with major research and commercial applications such as diagnostics and therapeutics. Currently, the dominant method for producing MoAbs is through the hybridoma technique. However, this technique is slow, tedious, labor intensive, and expensive. The production of MoAbs in cultured transgenic plant cells can offer some advantages over that in the over that in the mammalian systems. The media to cultivate plant cells are well defined and inexpensive. Contamination by bacteria or fungi is easily monitored in plant tissue cultures. Furthermore, these contaminants are usually not potent pathogens to human beings. In our interdisciplinary research efforts, heavy chain monoclonal antibody (HC MAb) was inserted into Ti plasmid vector and transferred into A. tumefaciens for the transformation in tobacco cells. It was found that 76% of the transformants produced HC MAb. The presence of HC MAb in the cell membrane fraction indicated that the signal peptide was functional and efficient. The change of the HC MAb concentration during a batch culture followed a similar trend as dry cell concentration, indicating that the production of HC MAb was growth related. The long-term repeated subcultures of 11 cell lines showed that there was no obvious trend of neither the decrease nor the increase of the productivity with the repeated subcultures.

  • PDF

Batch Plant and Truck Agitator of Ready Mixed Concrete (레미콘의 혼합설비 및 적재 운반설비 관리)

  • Kang, Hun;Lee, Jong-Ryeol
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.33-39
    • /
    • 2002
  • 레미콘의 품질성능을 좌우하는 것은 콘크리트 사용재료 및 배합뿐만 아니라 레미콘을 제조하는 믹서 및 이를 현장까지 운반하는 트럭 에지테이터의 품질성능에 크게 좌우된다. 그러나, 레미콘 공장의 혼합 설비인 믹서 및 트럭 에지테이터에 관한 국내 자료는 거의 전무한 실정이며 이에 관한 연구도 상대적으로 매우 부족하다. 특히, 최근에는 고강도 콘크리트, 고유동 콘크리트, 고강도 경량 콘크리트, 수중불분리 콘크리트, 섬유보강 콘크리트 등 고성능 콘크리트 성능에 대한 요구가 날로 증가하는 추세이며 이에 따라 레미콘 공장에서도 혼합설비 및 운반설비가 고성능화 되어 가는 추세이다.(중략)

Modeling of a Small Group Scale TMR Plant for Beef Cattle and Dairy Farm in Korea(II) - Performance Test and Cost Analysis of the Model Plant - (한우 및 낙농 단지용 소형 TMR 플랜트 모델 개발(II) - 모델의 성능시험 및 경제성분석 -)

  • Ha, Yu-Shin;Hong, Dong-Hyuck;Park, Kyung-Kyoo
    • Journal of Biosystems Engineering
    • /
    • v.35 no.2
    • /
    • pp.91-99
    • /
    • 2010
  • A Model of small scale total mixed rations(TMR) plant which can be utilized round bales was developed, tested and analyzed in this study. This study consist of two parts. One is development of a small scale TMR plant model which was already reported at the previous paper. This is the second part of the study. For the study, a series of tests of the model plant were performed and its costs was analyzed. Also, the break-even point of the model plant by comparing with market price of commercial TMR feed was determined. Results of the research are summarized as follows ; As the results of mixing test, the average coefficient of variation(CV) value for mixing of the feed was 13.0 % at the gate of the mixer. The production cost was estimated as 8,298 won/head for dairy cattle farm and 2,495 won/head for beef cattle farm, when producing 8 batch a day. Also, it is recommended to utilize the model plant when farm size is over 79 heads for dairy cattle farm and 113 heads for beef cattle farm. As an overall conclusion, the model plant designed for farm size TMR feed mill will be very useful model for both beef cattle and dairy farms in Korea. Also it is expected that the capital investment for the model plant can be recovered with 8 months compare with purchasing commercial TMR feed if the model plant feeds 1,000 beef cattle approximately.