• Title/Summary/Keyword: Batch Fermentation Method

Search Result 47, Processing Time 0.02 seconds

Estimation of Residual Biomass, PHB, and Nutrient Concentrations by Supplied Amount of Ammonia Solution in Fermentation of Alcaligenes latus

  • Lee, Yong-Woo;Tsuneo Yamane
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.554-561
    • /
    • 1999
  • A novel estimation method was investigated for determining the concentrations of residual biomass, poly-3-hydroxybutyrate (PHB), and main nutrients including carbon and nitrogen sources, phosphate, and mineral ions from the supplied amount of ammonia solution used for a pH-control solution and nitrogen source in a PHB fermentation. The estimation equations for a batch culture and a fed-batch culture were derived from the relationship between the growth rate of residual biomass and the feed rate of the pH-control solution, and then were applied to the batch culture and the fed-batch cultures of Alcaligenes latus. This method was successfully applied to estimate the concentrations of residual biomass, PHB, and nutrients.

  • PDF

Batch and Fed-batch Production of Hyperthermostable $\alpha$-L-Arabinofuranosidase of Thermotoga maritima in Recombinant Escherichia coli by Using Constitutive and Inducible Promoters

  • Song, Jae-Yong;Keum, In-Kyung;Jin, Qing;Park, Jung-Mi;Kim, Beom-Soo;Jung, Bong-Hwan;Kim, Tae-Jip;Han, Nam-Soo
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.990-995
    • /
    • 2008
  • A thermostable $\alpha$-L-arabinofuranosidases ($\alpha$-L-AFase) is an industrially important enzyme for recovery of L-arabinose from hemicellulose. The recombinant $\alpha$-L-AFase from Thermotoga maritima was expressed in Escherichia coli by using a constitutive pHCE or an inducible pRSET vectors. In batch fermentation, the constitutive expression system resulted in slightly faster growth rate (0.78 vs. 0.74/hr) but lower enzyme activity (2,553 vs. 3,723 units/L) than those of the induction system. When fed-batch fermentation was performed, biomass and enzyme activity reached the highest levels of 36 g/L and 9,152 units/L, respectively. The fed batch cultures performed superior results than batch culture in terms of biomass yield (4.62-5.42 folds) and enzyme synthesis (3.39-4.00 folds). In addition, the fed-batch induction strategy at high cell density resulted in the best productivity in cell growth as well as enzyme activity rather than the induction method at low cell density or the constitutive expression.

Validation and Recommendation of Methods to Measure Biogas Production Potential of Animal Manure

  • Pham, C.H.;Triolo, J.M.;Cu, T.T.T.;Pedersen, L.;Sommer, S.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.6
    • /
    • pp.864-873
    • /
    • 2013
  • In developing countries, biogas energy production is seen as a technology that can provide clean energy in poor regions and reduce pollution caused by animal manure. Laboratories in these countries have little access to advanced gas measuring equipment, which may limit research aimed at improving local adapted biogas production. They may also be unable to produce valid estimates of an international standard that can be used for articles published in international peer-reviewed science journals. This study tested and validated methods for measuring total biogas and methane ($CH_4$) production using batch fermentation and for characterizing the biomass. The biochemical methane potential (BMP) ($CH_4$ NL $kg^{-1}$ VS) of pig manure, cow manure and cellulose determined with the Moller and VDI methods was not significantly different in this test (p>0.05). The biodegradability using a ratio of BMP and theoretical BMP (TBMP) was slightly higher using the Hansen method, but differences were not significant. Degradation rate assessed by methane formation rate showed wide variation within the batch method tested. The first-order kinetics constant k for the cumulative methane production curve was highest when two animal manures were fermented using the VDI 4630 method, indicating that this method was able to reach steady conditions in a shorter time, reducing fermentation duration. In precision tests, the repeatability of the relative standard deviation (RSDr) for all batch methods was very low (4.8 to 8.1%), while the reproducibility of the relative standard deviation (RSDR) varied widely, from 7.3 to 19.8%. In determination of biomethane concentration, the values obtained using the liquid replacement method (LRM) were comparable to those obtained using gas chromatography (GC). This indicates that the LRM method could be used to determine biomethane concentration in biogas in laboratories with limited access to GC.

Fermentation Studies on Pseudomonas aeruginosa Producing Antifungal Secondary Metabolite, PAFS. (항진균물질을 생합성하는 Pseudomonas aeruginosa의 배양생리적 특성 연구)

  • 송성기;윤권상;정용섭;전계택
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.1
    • /
    • pp.52-59
    • /
    • 2004
  • When both fructose and galactose were added to a production medium as carbon sources, the productivity of PAFS (Psedomonas Antifungal Substance) biosynthesized by Pseudomonas aeruginosa was observed to be reduced significantly due to the well-known phenomenon of catabolite repression. In order to overcome this phenomenon by use of fermentation bioprocess, fed-batch cultivation method was examined. In addition, a high producer mutant strain, AP-20 obtained by a rational screening method was tested for its productivity of PAFS in both batch and fed-batch fermentation processes. Notably fed-batch operation showed approximately 4 fold higher PAFS productivity than traditional batch operation process. It was appeared that galactose was utilized principally for the cell growth of Pseudomonas aeruginosa whereas large portion of fructose was used for the biosynthesis of PAFS. Furthermore it was observed that composition and feeding rate of production media should be optimized even in the fed-batch fermentation bioprocess. As an example, very slow feeding of carbon sources gave rather negative effect on the production of PAFS due to significant limitation of carbon and energy sources available for the producer microorganism.

Batch and Fed-batch Fermentation for the Lovastatin Production by Cerulenin-resistant Aspergillus terreus Mutant (Cerulenin 저항성 Aspergillus terreus 변이주로부터 lovastatin 생산을 위한 회분식과 유가식 배양)

  • 문미경;전계택;정용섭
    • KSBB Journal
    • /
    • v.16 no.1
    • /
    • pp.87-94
    • /
    • 2001
  • The biosynthesis of Lovastatin, a cholesterol lowering agent formed by the filamentous fungus, cerulenin-resistant Aspergillus terreus mutant was studied in shake flasks and bioreactors. The lovastatin production could be improved by fed-batch under the limited condition of carbon source. The relationship between the fungal morphology and the lovastatin production was also examined during the fed-batch cultures. The fed-batch studies in shake flasks were carried out to find the optimum glucose feeding method, and the pulsed feeding of glucose from 3 days onward at 24 hours intervals was found to be optimal to increase the lovastatin production and reduce the average pellet size. When the pH was controlled at around 5.8 during the whole fermentation period, the lovastatin concentration reached 384 mg/L, which is much higher than the values obtained pH-uncontrolled and pH 7.4. The optimal glucose feeding strategies was found that 30 g/L of glucose was added initially in batch mode, and then fed-batch was conducted by continuous addition of glucose solution(180 g/L) from 72 to 240 hr at a rate of 1.2 mL/hr at $28^{\circ}C$, pH 5.8, 400 rpm, and 1.0 vvm. The lovastatin concentration of 547 mg/L was obtained in 168 hr. It was about 1.5 times higher than the value of the batch fermentation.

  • PDF

Efficient Production of ε-Poly-L-Lysine by Streptomyces ahygroscopicus Using One-Stage pH Control Fed-Batch Fermentation Coupled with Nutrient Feeding

  • Liu, Sheng-Rong;Wu, Qing-Ping;Zhang, Ju-Mei;Mo, Shu-Ping
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.358-365
    • /
    • 2015
  • ε-Poly-L-lysine (ε-PL) is a homopolymer of L-lysine molecules connected between the epsilon amino and alpha carboxyl groups. This polymer is currently used as a natural preservative in food. Insufficient biomass is a major problem in ε-PL fermentation. Here, to improve cell growth and ε-PL productivity, various nitrogen-rich nutrients were supplemented into flask cultures after 16 h cultivation, marking the onset of ε-PL biosynthesis. Yeast extract, soybean powder, corn powder, and beef extract significantly improved cell growth. In terms of ε-PL productivity, yeast extract at 0.5% (w/v) gave the maximum yield (2.24 g/l), 115.4% higher than the control (1.04 g/l), followed by soybean powder (1.86 g/l) at 1% (w/v) and corn powder (1.72 g/l) at 1% (w/v). However, supplementation with beef extract inhibited ε-PL production. The optimal time for supplementation for all nutrients examined was at 16 h cultivation. The kinetics of yeast-extract-supplemented cultures showed enhanced cell growth and production duration. Thus, the most commonly used two-stage pH control fed-batch fermentation method was modified by omitting the pH 5.0-controlled period, and coupling the procedure with nutrient feeding in the pH 3.9-controlled phase. Using this process, by continuously feeding 0.5 g/h of yeast extract, soybean powder, or corn powder into cultures in a 30 L fermenter, the final ε-PL titer reached 28.2 g/l, 23.7 g/l, and 21.4 g/l, respectively, 91.8%, 61.2%, and 45.6% higher than that of the control (14.7 g/l). This describes a promising option for the mass production of ε-PL.

Automation of Glutamic Acid Fermentation (글루탐산 발효공정의 자동화)

  • Park, S.H.;Hong, K.T.;You, S.J.;Lee, J.H.;Bae, J.C.
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.202-204
    • /
    • 1983
  • A strategy for the automation of glutamic acid fermentation has been developed by the use of $CO_2$ analyzer together with a controller. It was found that a linear relationship existed between growth and $CO_2$ level in the exit gas. Therefore penicillin addition at an appropriate biomass concentration to excrete glutamate could be achieved automatically. In addition, an automatic batch feeding method (fed-batch culture) provided a means of overcoming substrate inhibition effects on growth and glutamic acid production in batch culture, thereby increasing productivity and product yield.

  • PDF

Bioethanol production using batch reactor from foodwastes (회분식 반응기에서 음식물쓰레기를 이용한 바이오에탄올 생산)

  • Lee, Jun-Cheol;Kim, Jae-Hyung;Park, Hong-Sun;Pak, Dae-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.609-614
    • /
    • 2010
  • In the present study, bioethanol was produced using batch style reactor from food wastes which has organic characteristics. Pretreatment was required to reduce its particle size and produce fermentable sugar. Two different enzymes such as carbohydrase and gulcoamylase were tested for saccharification of food waste. The efficiency of carbohydrase saccharification (0.63 g/g-TS) has shown higher than glucoamylase saccharification(0.42 g/g-TS). Saccharomyces cerevisiae produced bioethanol via separate hydrolysis & fermentation (SHF) method and simultaneous saccharification fermentation (SSF) method. The production amount of bioethanol was 0.27 g/$L{\cdot}hr$ for SHF and 0.44 g/$L{\cdot}hr$ for SSF.

Control of dissolved Oxygen Concentration and Specific Growth Rate in Fed-batch Fermentation (유가식 생물반응기에서의 용존산소농도 및 비성장속도의 제어)

  • Kim, Chang-Gyeom;Lee, Tae-Ho;Lee, Seung-Cheol;Chang, Yong-Keun;Chang, Ho-Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.4
    • /
    • pp.354-365
    • /
    • 1993
  • A novel control method with automatic tuning of PID controller parameters has been developed for efficient regulation of dissolved oxygen concentration in fed-batch fermentations of Escherichia coli. Agitation speed and oxygen partial pressure in the inlet gas stream were chosen to be the manipulated variables. A heuristic reasoning allowed improved tuning decisions from the supervision of control performance indices and it coule obviate the needs for process assumptions or disturbance patterns. The control input consisted of feedback and feedforword parts. The feedback part was determined by PID control and the feedforward part is determined from the feed rate. The proportional gain was updated on-line by a set of heuristics rules based on the supervision of three performance indices. These indices were output error covariance, the average value of output error, and input covariance, which were calculated on-line using a moving window. The integral and derivative time constants were determined from the period of output response. The specific growth rate was maintained at a low level to avoid acetic acid accumulation and thus to achieve a high cell density. The specific growthe rate was estimated from the carbon dioxide evolution rate. In fed-batch fermentation, the simutaneous control of dissolved oxygen concentration (at 0.2; fraction of saturated value) and specific growth rate (at 0.25$hr^{-1}$) was satisfactory for the entire culture period in spite of the changes in the feed rate and the switching of control input.

  • PDF

The Optimization of Expression System for Recombinant Protein Production by Pichia pastoris and Hansenula polymorphs (유전자 재조합 단백질 생산에 있어서 Pichia pastoris와 Hansenula polymorpha를 이용한 최적 발현 방법 개발)

  • 강환구;전희진;김재호
    • KSBB Journal
    • /
    • v.15 no.2
    • /
    • pp.174-180
    • /
    • 2000
  • Pichia pastoris and Hansenula polymorpha, the methylotrophic yeasts have been widely used as a host for the production of e eudaryotic proteins due to the advantages related to their inherited characters. This paper describes the method to enhance t the productivity of recombinant proteins by P. pastoris and H. po$\psi$morpha. In the production of recombinant proteins using a f fed batch fermentation system, the effects of specific growth rate on the specific expression rate of re$\infty$mbinant proteins w were studied. In both species, the expression system of recombinant proteins using the fed batch fermentation was optimezed.

  • PDF